Skip to main content

Microbial Regulation of Gastrointestinal Immunity in Health and Disease

  • Chapter
  • First Online:
Neuro-Immuno-Gastroenterology

Abstract

The gastrointestinal (GI) tract represents the front line of microbial-host interaction by virtue of its immense surface area and constant microbial supply from ingested food. The gastrointestinal immune system shapes the communities of microbes throughout the GI tract, and in turn, the microbiota provide metabolites and other cues to support the development and normal function of the immune system. Emerging research shows that this influence on the immune system encompasses both innate and adaptive immunity and extends beyond the gut to anatomical sites throughout the body. This chapter presents an overview of the microbiology and immunology of the GI tract, examines microbial population dynamics revealed by studies such as the Human Microbiome Project and discusses the potential impact of emerging antimicrobial resistance to the microbiota and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arebi N, Gurmany S, et al. Review article: the psychoneuroimmunology of irritable bowel syndrome – an exploration of interactions between psychological, neurological and immunological observations. Aliment Pharmacol Ther. 2008;28(7):830–40.

    Article  CAS  PubMed  Google Scholar 

  2. Arpaia N, Campbell C, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arumugam M, Raes J, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature. 2004;427(6973):441–4.

    Google Scholar 

  5. Bercik P, Collins SM. The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis. Adv Exp Med Biol. 2014;817:279–89.

    Article  CAS  PubMed  Google Scholar 

  6. Brandl K, Plitas G, et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature. 2008;455(7214):804–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bry L, Falk PG, et al. A model of host-microbial interactions in an open mammalian ecosystem. Science. 1996;273(5280):1380–3.

    Article  CAS  PubMed  Google Scholar 

  8. Cerdeno-Tarraga AM, Patrick S, et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science. 2005;307(5714):1463–5.

    Google Scholar 

  9. Cho I, Yamanishi S, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cobb BA, Wang Q, et al. Polysaccharide processing and presentation by the MHCII pathway. Cell. 2004;117(5):677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drasar BS, Duerden BI. Anaerobes in the normal flora of man. In: Duerden BI, Drasar BS, editors. Anaerobes in human disease. London: Edward Arnold; 1991. p. 162–79.

    Google Scholar 

  12. Duncan SH, Hold GL, et al. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52(Pt 6):2141–6.

    Google Scholar 

  13. Duncan SH, Louis P, et al. Cultivable bacterial diversity from the human colon. Lett Appl Microbiol. 2007;44(4):343–50.

    Article  CAS  PubMed  Google Scholar 

  14. El Aidy S, van den Bogert B, et al. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol. 2015;32:14–20.

    Article  CAS  PubMed  Google Scholar 

  15. Erny D, Hrabe de Angelis AL, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77.

    Article  CAS  PubMed  Google Scholar 

  16. Finley RL, Collignon P, et al. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis. 2013;57(5):704–10.

    Article  PubMed  Google Scholar 

  17. Fukuda S, Toh H, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–7.

    Article  CAS  PubMed  Google Scholar 

  18. Furusawa Y, Obata Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    Article  CAS  PubMed  Google Scholar 

  19. Gaboriau-Routhiau V, Rakotobe S, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  20. Gaskins HR. Immunological aspects of host/microbiota interactions at the intestinal epithelium. In: White BA, Isaacson RE, Mackie RI, editors. Gastrointestinal microbiology, vol. 2. New York: Chapman and Hall; 1997. p. 537–87.

    Chapter  Google Scholar 

  21. Gibson GR, MacFarlane GT. Human health: the contribution of microorganisms. In: Gibson SAW, editor. Intestinal bacteria and disease. London: Springer; 1994. p. 53–62.

    Google Scholar 

  22. Gibson MK, Pesesky MW, et al. The yin and yang of bacterial resilience in the human gut microbiota. J Mol Biol. 2014;426(23):3866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ginhoux F, Greter M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haag LM, Fischer A, et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One. 2012;7(5):e35988.

    Google Scholar 

  25. Harrington LE, Hatton RD, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.

    Article  CAS  PubMed  Google Scholar 

  26. Henriksson AE, Blomquist L, et al. Small intestinal bacterial overgrowth in patients with rheumatoid arthritis. Ann Rheum Dis. 1993;52(7):503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ivanov II, Atarashi K, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jakobsson HE, Jernberg C, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5(3):e9836.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jernberg C, Lofmark S, et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  30. Jernberg C, Lofmark S, et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(Pt 11):3216–23.

    Article  CAS  PubMed  Google Scholar 

  31. Kernbauer E, Ding Y, et al. An enteric virus can replace the beneficial function of commensal bacteria. Nature. 2014;516(7529):94–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Langrish CL, Chen Y, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee H, Lee S, et al. Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Protein Pept Sci. 2013;14(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  34. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298–306.

    Article  CAS  PubMed  Google Scholar 

  35. Massacand JC, Kaiser P, et al. Intestinal bacteria condition dendritic cells to promote IgA production. PLoS One. 2008;3(7):e2588.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mazmanian SK, Round JL, et al. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.

    Article  CAS  PubMed  Google Scholar 

  37. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39(2):338–42.

    CAS  PubMed  Google Scholar 

  38. Miquel S, Martin R, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–61.

    Google Scholar 

  39. Modi SR, Collins JJ, et al. Antibiotics and the gut microbiota. J Clin Invest. 2014;124(10):4212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Molloy MJ, Bouladoux N, et al. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol. 2012;24(1):58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naeem S, Li S. Biodiversity enhances ecosystem reliability. Nature. 1997;390:507–9.

    Article  CAS  Google Scholar 

  42. Namavar F, Theunissen EB, et al. Epidemiology of the Bacteroides fragilis group in the colonic flora in 10 patients with colonic cancer. J Med Microbiol. 1989;29(3):171–6.

    Google Scholar 

  43. Ng KM, Ferreyra JA, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park H, Li Z, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patrick S. Bacteroides. In: Boulnois B, Griffin G, Hormaeche C, Keusch G,Levine M, Smith H, Williams P, Sussman M, editors. Molecular Medical Microbiology, vol. 3. London: Academic Press; 2002.p 1921–48.

    Google Scholar 

  46. Patrick S. Bacteroides. In: Tang Y-W, Sussman M, Poxton I, Liu D,Schwartzman J, editors. Molecular Medical Microbiology, vol. 2, Second Edition. London: Academic Press; 2015. p 917–44.

    Google Scholar 

  47. Patrick S, Blakely GW, et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology. 2010;156(Pt 11):3255–69.

    Google Scholar 

  48. Petersson J, Schreiber O, et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Petra AI, Panagiotidou S, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poxton IR, Brown R, et al. Mucosa-associated bacterial flora of the human colon. J Med Microbiol. 1997;46(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  51. Qin J, Li R, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schenk M, Bouchon A, et al. Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine. J Immunol. 2005;174(1):517–24.

    Article  CAS  PubMed  Google Scholar 

  55. Schmolke M, Patel JR, et al. RIG-I detects mRNA of intracellular Salmonella enterica serovar Typhimurium during bacterial infection. MBio. 2014;5(2):e01006–14.

    Google Scholar 

  56. Sommer MO, Dantas G. Antibiotics and the resistant microbiome. Curr Opin Microbiol. 2011;14(5):556–63.

    Article  CAS  PubMed  Google Scholar 

  57. Strober W. The multifaceted influence of the mucosal microflora on mucosal dendritic cell responses. Immunity. 2009;31(3):377–88.

    Article  CAS  PubMed  Google Scholar 

  58. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    CAS  PubMed  Google Scholar 

  59. Vighi G, Marcucci F, et al. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008;153 Suppl 1:3–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walker AW. The human microbiota and pathogen interactions. In: Debanne SM, Tang Y-W, Liu D, Poxton IR, Schwartzman JD, editors. Molecular medical microbiology, vol. 2. London: Academic; 2015. p. 347–56.

    Google Scholar 

  61. Walker AW, Duncan SH, et al. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 2014;22(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  62. Wesolowska-Andersen A, Bahl MI, et al. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2:19.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621.

    Google Scholar 

  64. Willing BP, Russell SL, et al. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011;9(4):233–43.

    Article  CAS  PubMed  Google Scholar 

  65. Willis AT. Abdominal sepsis. In: Duerden BI, Drasar BS, editors. Anaerobes in human disease. London: Edward Arnold; 1991. p. 197–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise C. Fitzgerald BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patrick, S., Ingram, R.J., Schneiders, T., Fitzgerald, D.C. (2016). Microbial Regulation of Gastrointestinal Immunity in Health and Disease. In: Constantinescu, C., Arsenescu, R., Arsenescu, V. (eds) Neuro-Immuno-Gastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-28609-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28609-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28607-5

  • Online ISBN: 978-3-319-28609-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics