Skip to main content

The Immunology of the Gastrointestinal System

  • Chapter
  • First Online:
Neuro-Immuno-Gastroenterology

Abstract

Distinctive features of the gastrointestinal immune system include its size, organisation and perpetual exposure to dietary antigens and a large and complex population of resident microorganisms. The mucosal immune system maintains homeostasis by avoiding tissue damaging responses to the luminal contents, whilst at the same time retaining the capacity to provide protection against pathogens. The luminal environment changes markedly from the proximal to the distal gastrointestinal tract, which may explain the restriction of many immune-mediated diseases to specific regions. Diseases that are considered in this chapter include pernicious anaemia, coeliac disease, those related to immunodeficiency, inflammatory bowel disease and bacterial infections that affect distinct regions of the gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.

    Article  CAS  PubMed  Google Scholar 

  2. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–69.

    Article  CAS  PubMed  Google Scholar 

  3. Macpherson A, Maloy K. Adaptive immunity in the gastrointestinal tract. In: Mahida YR, editor. Immunological aspects of gastroenterology. Dordrecht/Boston/London: Kluwer Academic Publishers; 2001. p. 35–51.

    Chapter  Google Scholar 

  4. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    Article  CAS  PubMed  Google Scholar 

  5. Veldhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nat Rev Immunol. 2012;12:696–708.

    Article  CAS  PubMed  Google Scholar 

  6. Spits H, Artis D, Colonna M, et al. Innate lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

    Article  CAS  PubMed  Google Scholar 

  7. Abrahamsson SV, Angelini DF, Dubinsky AN, et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain. 2013;136:2888–903.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2000;6:21–33.

    Article  CAS  PubMed  Google Scholar 

  9. Elphick DA, Mahida YR. Paneth cells: their role in innate immunity and inflammatory disease. Gut. 2005;54:1802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  11. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  CAS  Google Scholar 

  12. Human Microbiome Project C. A framework for human microbiome research. Nature. 2012;486:215–21.

    Article  CAS  Google Scholar 

  13. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.

    Article  CAS  PubMed  Google Scholar 

  15. Rajilic-Stojanovic M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 2007;9:2125–36.

    Article  PubMed  Google Scholar 

  16. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lozupone CA, Stombaugh J, Gonzalez A, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharmacol Res. 2013;69:75–86.

    Article  CAS  PubMed  Google Scholar 

  19. Garner CD, Antonopoulos DA, Wagner B, et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect Immun. 2009;77:2691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ubeda C, Taur Y, Jenq RR, et al. Vancomycin-resistant enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120:4332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swidsinski A, Loening-Baucke V, Lochs H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005;11:1131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Varbanova M, Frauenschlager K, Malfertheiner P. Chronic gastritis – an update. Best Pract Res Clin Gastroenterol. 2014;28:1031–42.

    Article  PubMed  Google Scholar 

  24. Bizzaro N, Antico A. Diagnosis and classification of pernicious anemia. Autoimmun Rev. 2014;13:565–8.

    Article  PubMed  Google Scholar 

  25. Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–81.

    Article  CAS  PubMed  Google Scholar 

  26. Amedei A, Bergman MP, Appelmelk BJ, et al. Molecular mimicry between Helicobacter pylori antigens and H+, K+ − -adenosine triphosphatase in human gastric autoimmunity. J Exp Med. 2003;198:1147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumann WL, Coss E, Rugge M, et al. Autoimmune atrophic gastritis – pathogenesis, pathology and management. Nat Rev Gastroenterol Hepatol. 2013;10:529–41.

    Article  CAS  PubMed  Google Scholar 

  28. Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol. 2013;13:294–302.

    Article  CAS  PubMed  Google Scholar 

  29. Ludvigsson JF, Bai JC, Biagi F, et al. Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut. 2014;63:1210–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dieterich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3:797–801.

    Article  CAS  PubMed  Google Scholar 

  31. Meresse B, Malamut G, Cerf-Bensussan N. Celiac disease: an immunological jigsaw. Immunity. 2012;36:907–19.

    Article  CAS  PubMed  Google Scholar 

  32. NICE. Coeliac disease: recognition and assessment of coeliac disease. 2009.

    Google Scholar 

  33. Husby S, Koletzko S, Korponay-Szabo IR, et al. European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54:136–60.

    Article  CAS  PubMed  Google Scholar 

  34. Al-Herz W, Bousfiha A, Casanova JL, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.

    PubMed  PubMed Central  Google Scholar 

  35. Chinen J, Shearer WT. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol. 2010;125:S195–203.

    Article  PubMed  Google Scholar 

  36. Agarwal S, Mayer L. Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clin Gastroenterol Hepatol. 2013;11:1050–63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. ESID. ESID registry – working definitions for clinical diagnosis of PID. 2014.

    Google Scholar 

  38. Angulo I, Vadas O, Garcon F, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342:866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20:1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dhalla F, da Silva SP, Lucas M, et al. Review of gastric cancer risk factors in patients with common variable immunodeficiency disorders, resulting in a proposal for a surveillance programme. Clin Exp Immunol. 2011;165:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kobayashi I, Kubota M, Yamada M, et al. Autoantibodies to villin occur frequently in IPEX, a severe immune dysregulation, syndrome caused by mutation of FOXP3. Clin Immunol. 2011;141:83–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rytter MJ, Kolte L, Briend A, et al. The immune system in children with malnutrition – a systematic review. PLoS One. 2014;9, e105017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. WHO. WHO data and statistics – HIV: global situation and trends. 2014.

    Google Scholar 

  44. Xu H, Wang X, Veazey RS. Mucosal immunology of HIV infection. Immunol Rev. 2013;254:10–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vachon M-LC, Dieterich DT. Gastrointestinal disorders in HIV including diarrhoea. In: Volberding PA, Greene WC, Lange J, Gallant J, Sewankambo N, editors. Sande’s HIV/AIDS medicine: medical management of AIDS 2012: Elsevier; 2012.

    Google Scholar 

  46. Barzilay EJ, Fagan RP. Helicobacter pylori. 2012. http://wwwnc.cdc.gov/travel/yellowbook/2012/chapter-3-infectious-diseases-related-to-travel/helicobacter-pylori.htm. Accessed 20 Jan 2013: Centres for Disease Control and Prevention. Chapter 3: Infectious diseases related to travel.

  47. Robinson K, Argent RH, Atherton JC. The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol. 2007;21:237–59.

    Article  CAS  PubMed  Google Scholar 

  48. Patel SR, Smith K, Letley DP, et al. Helicobacter pylori downregulates expression of human beta-defensin 1 in the gastric mucosa in a type IV secretion-dependent fashion. Cell Microbiol. 2013;15:2080–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Futagami S, Hiratsuka T, Suzuki K, et al. Gammadelta T cells increase with gastric mucosal interleukin (IL)-7, IL-1beta, and Helicobacter pylori urease specific immunoglobulin levels via CCR2 upregulation in Helicobacter pylori gastritis. J Gastroenterol Hepatol. 2006;21:32–40.

    Article  CAS  PubMed  Google Scholar 

  50. Hitzler I, Kohler E, Engler DB, et al. The role of Th cell subsets in the control of Helicobacter infections and in T cell-driven gastric immunopathology. Front Immunol. 2012;3:142.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Robinson K, Kenefeck R, Pidgeon EL, et al. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut. 2008;57:1375–85.

    Article  CAS  PubMed  Google Scholar 

  52. Velin D, Favre L, Bernasconi E, et al. Interleukin-17 is a critical mediator of vaccine-induced reduction of Helicobacter infection in the mouse model. Gastroenterology. 2009;136:2237–46. e1.

    Article  CAS  PubMed  Google Scholar 

  53. Serrano C, Wright SW, Bimczok D, et al. Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children. Mucosal Immunol. 2013;6:950–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lievin-Le Moal V, Servin AL. Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev. 2013;77:380–439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hurley D, McCusker MP, Fanning S, et al. Salmonella-host interactions – modulation of the host innate immune system. Front Immunol. 2014;5:481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. McClelland M, Sanderson KE, Spieth J, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413:852–6.

    Article  CAS  PubMed  Google Scholar 

  57. de Jong HK, Parry CM, van der Poll T, et al. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog. 2012;8, e1002933.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Valdez Y, Ferreira RB, Finlay BB. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol. 2009;337:93–127.

    CAS  PubMed  Google Scholar 

  59. Fabrega A, Vila J. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26:308–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med. 1994;180:15–23.

    Article  CAS  PubMed  Google Scholar 

  61. Miller H, Zhang J, Kuolee R, et al. Intestinal M cells: the fallible sentinels? World J Gastroenterol. 2007;13:1477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Francis CL, Starnbach MN, Falkow S. Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol. 1992;6:3077–87.

    Article  CAS  PubMed  Google Scholar 

  63. Vazquez-Torres A, Jones-Carson J, Baumler AJ, et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 1999;401:804–8.

    Article  CAS  PubMed  Google Scholar 

  64. Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307:254–8.

    Article  CAS  PubMed  Google Scholar 

  65. Chakravortty D, Hensel M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 2003;5:621–7.

    Article  CAS  PubMed  Google Scholar 

  66. Vazquez-Torres A, Xu Y, Jones-Carson J, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science. 2000;287:1655–8.

    Article  CAS  PubMed  Google Scholar 

  67. Arpaia N, Godec J, Lau L, et al. TLR signaling is required for Salmonella typhimurium virulence. Cell. 2011;144:675–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Broz P, Ohlson MB, Monack DM. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes. 2012;3:62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Winter SE, Thiennimitr P, Winter MG, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467:426–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Behnsen J, Jellbauer S, Wong CP, et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity. 2014;40:262–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Monack DM. The battle in the gut. Immunity. 2014;40:173–5.

    Article  CAS  PubMed  Google Scholar 

  72. Franchi L, Kamada N, Nakamura Y, et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol. 2012;13:449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cummings LA, Barrett SL, Wilkerson WD, et al. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol. 2005;174:7929–38.

    Article  CAS  PubMed  Google Scholar 

  74. Cummings LA, Wilkerson WD, Bergsbaken T, et al. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol. 2006;61:795–809.

    Article  CAS  PubMed  Google Scholar 

  75. von Moltke J, Ayres JS, Kofoed EM, et al. Recognition of bacteria by inflammasomes. Annu Rev Immunol. 2013;31:73–106.

    Article  CAS  Google Scholar 

  76. Koizumi Y, Toma C, Higa N, et al. Inflammasome activation via intracellular NLRs triggered by bacterial infection. Cell Microbiol. 2012;14:149–54.

    Article  CAS  PubMed  Google Scholar 

  77. Nauciel C. Role of CD4+ T cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection. J Immunol. 1990;145:1265–9.

    CAS  PubMed  Google Scholar 

  78. Hess J, Ladel C, Miko D, et al. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol. 1996;156:3321–6.

    CAS  PubMed  Google Scholar 

  79. Griffin AJ, McSorley SJ. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol. 2011;4:371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mastroeni P, Simmons C, Fowler R, et al. Igh-6(−/−) (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun. 2000;68:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McSorley SJ, Jenkins MK. Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar typhimurium. Infect Immun. 2000;68:3344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mittrucker HW, Raupach B, Kohler A, et al. Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J Immunol. 2000;164:1648–52.

    Article  CAS  PubMed  Google Scholar 

  83. Cunningham AF, Gaspal F, Serre K, et al. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J Immunol. 2007;178:6200–7.

    Article  CAS  PubMed  Google Scholar 

  84. Sztein MB, Salerno-Goncalves R, McArthur MA. Complex adaptive immunity to enteric fevers in humans: lessons learned and the path forward. Front Immunol. 2014;5:516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Raymond B, Young JC, Pallett M, et al. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 2013;21:430–41.

    Article  CAS  PubMed  Google Scholar 

  86. Young KT, Davis LM, Dirita VJ. Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol. 2007;5:665–79.

    Article  CAS  PubMed  Google Scholar 

  87. Poly F, Guerry P. Pathogenesis of Campylobacter. Curr Opin Gastroenterol. 2008;24:27–31.

    Article  CAS  PubMed  Google Scholar 

  88. Zilbauer M, Dorrell N, Wren BW, et al. Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg. 2008;102:123–9.

    Article  CAS  PubMed  Google Scholar 

  89. Rubinchik S, Seddon A, Karlyshev AV. Molecular mechanisms and biological role of Campylobacter jejuni attachment to host cells. Eur J Microbiol Immunol (Bp). 2012;2:32–40.

    Article  CAS  Google Scholar 

  90. Bakhiet M, Al-Salloom FS, Qareiballa A, et al. Induction of alpha and beta chemokines by intestinal epithelial cells stimulated with Campylobacter jejuni. J Infect. 2004;48:236–44.

    Article  PubMed  Google Scholar 

  91. Hu L, Hickey TE. Campylobacter jejuni induces secretion of proinflammatory chemokines from human intestinal epithelial cells. Infect Immun. 2005;73:4437–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zilbauer M, Dorrell N, Boughan PK, et al. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun. 2005;73:7281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Watson RO, Galan JE. Signal transduction in Campylobacter jejuni-induced cytokine production. Cell Microbiol. 2005;7:655–65.

    Article  CAS  PubMed  Google Scholar 

  94. Zilbauer M, Dorrell N, Elmi A, et al. A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol. 2007;9:2404–16.

    Article  CAS  PubMed  Google Scholar 

  95. Friis LM, Keelan M, Taylor DE. Campylobacter jejuni drives MyD88-independent interleukin-6 secretion via Toll-like receptor 2. Infect Immun. 2009;77:1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng J, Meng J, Zhao S, et al. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. Infect Immun. 2008;76:4498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ketley JM. Pathogenesis of enteric infection by Campylobacter. Microbiology. 1997;143(Pt 1):5–21.

    Article  CAS  PubMed  Google Scholar 

  98. Edwards LA, Nistala K, Mills DC, et al. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One. 2010;5, e15398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Monaghan T, Boswell T, Mahida YR. Recent advances in Clostridium difficile-associated disease. Gut. 2008;57:850–60.

    CAS  PubMed  Google Scholar 

  100. Monaghan T, Cockayne A, Mahida YR. Pathogenesis of C. difficile infection and its potential role in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1957–66.

    Article  PubMed  Google Scholar 

  101. Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18:247–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513:237–41.

    Article  CAS  PubMed  Google Scholar 

  103. Mowat C, Cole A, Windsor A, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011;60:571–607.

    Article  PubMed  Google Scholar 

  104. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lobaton T, Vermeire S, Van Assche G, et al. Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2014;39:579–94.

    Article  CAS  PubMed  Google Scholar 

  108. Hawkey CJ. Stem cells as treatment in inflammatory bowel disease. Dig Dis. 2012;30 Suppl 3:134–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Mahida MD, FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Staples, E., Monaghan, T.M., Mahida, Y. (2016). The Immunology of the Gastrointestinal System. In: Constantinescu, C., Arsenescu, R., Arsenescu, V. (eds) Neuro-Immuno-Gastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-28609-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28609-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28607-5

  • Online ISBN: 978-3-319-28609-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics