Skip to main content

Using Robotic Exoskeletons for Over-Ground Locomotor Training

Abstract

Once designed to augment the capability of soldiers in combat, robotic exoskeletons are now emerging as promising assistive technologies in neurorehabilitation. Exoskeletons have the potential to help individuals maintain or regain neuromuscular health and to provide personal mobility or over-ground locomotor training for individuals recovering from stroke, spinal cord injury (SCI), or other neurological injuries. Preliminary data suggest that these individuals may benefit from the use of exoskeletons, either alone or as a compliment to traditional rehabilitation strategies. Further research in this emerging field, including clinical trials to assess the therapeutic benefits and limitations of exoskeletons, is required to achieve a greater understanding of how to use these devices inside and outside of the clinic. Use of exoskeletons as clinical tools requires clinicians to understand how to operate and monitor the device, which patient population(s) are appropriate and would most benefit from the device, and the limitations and safety measures required for each device.

Keywords

  • Exoskeleton
  • Spinal cord injury
  • Neurological injury
  • Stroke
  • Assistive robots
  • Robotics
  • Rehabilitation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28603-7_24
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28603-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 24.1
Fig. 24.2
Fig. 24.3
Fig. 24.4
Fig. 24.5

References

  1. Yagn N. Apparatus for facilitating walking. USA patent US420179 A. 1890.

    Google Scholar 

  2. Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state of-the-art. IEEE Trans Robot. 2008;24:144–58. doi:10.1109/TRO.2008.915453.

    CrossRef  Google Scholar 

  3. Sykes L, Edwards J, Powell E, Ross RS. The reciprocating gait orthosis: long-term usage patterns. Arch Phys Med Rehabil. 1995;76:779–83. doi:10.1016/S0003-9993(95)80534-6.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Kellner T. The story behind the real ‘Iron Man’ suit GE reports. [Internet]. 23 Nov 2010 [cited 7 Dec 2015]; Available from: http://www.gereports.com/post/78574114995/the-story-behind-the-real-iron-man-suit.

  5. Swinnen E, Duerinck S, Baeyens JP, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42:520–6.

    CrossRef  PubMed  Google Scholar 

  6. ReWalk: Company. 2015. www.rewalk.com/company/. Accessed 29 Apr 2015.

  7. Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91:911–21. doi:10.1097/PHM.0b013e318269d9a3.

    CrossRef  PubMed  Google Scholar 

  8. Talaty M, Esquenazi A, Briceno JE. Differentiating ability in users of the ReWalk(TM) powered exoskeleton: an analysis of walking kinematics. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR). Proceedings of the 2013 IEEE International Conference on Rehabilitation Robotics, 24–26 Jun 2013. Seattle; 2013. p. 1–5.

    Google Scholar 

  9. Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73–84. doi:10.1177/0269215515575166.

    CrossRef  PubMed  Google Scholar 

  10. FDA allows marketing of first wearable, motorized device that helps people with certain spinal cord injuries to walk. 2014. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm402970.htm. Accessed 6 May 2015.

  11. Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med. 2012;35:96–101. http://dx.doi.org/10.1179/2045772312Y.0000000003.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Ekso Bionics—Who We Are. 2015. http://www.eksobionics.com/ourstory. Accessed 6 May 2015.

  13. Kressler J, Thomas CK, Field-Fote EC, Sanchez J, Widerstrom-Noga E, Cilien DC, et al. Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Arch Phys Med Rehabil. 2014;95:1878–87. doi:10.1016/j.apmr.2014.04.026. e4.

    CrossRef  PubMed  Google Scholar 

  14. Kolakowsky-Hayner SA, Crew J, Moran S, Shah A. Safety and feasibility of using the Ekso bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013. doi:10.4172/2165-7939.S4-003.

    Google Scholar 

  15. Jayaraman A, et al. Evaluation of the clinical criteria for safe and efficient use of exoskeletons in individuals with SCI. Proceedings of the 2013 American Spinal Injury Association (ASIA) Conference, 5–7 May 2013. Chicago; 2013.

    Google Scholar 

  16. Jayaraman A, et al. Effectiveness of robotic exoskeletons in everyday rehabilitation. Proceedings of the 8th ISPRM World Congress, 01–05 Jun 2014. Cancun; 2014.

    Google Scholar 

  17. Jayaraman A, Rymer W. Exoskeletons for neurologically impaired individuals. Proceedings of the 2014 Academy of Spinal Cord Injury Professionals, 31–3 Aug–Sept 2014. St. Louis; 2014.

    Google Scholar 

  18. Kozlowski A, et al. Assisted walking for persons with neurological conditions: The state of science. Proceedings from the 91st Annual American Congress of Rehabilitation Medicine, 7–11 Oct 2014. Toronto; 2014.

    Google Scholar 

  19. Nolan KJ. Gait training of stroke patients using a robotic exoskeleton during inpatient rehabilitation: feasibility study. Proceedings from the International Workshop of Wearable Robotics, 14–19 Sept 2014. Baiona; 2014.

    Google Scholar 

  20. Forrest G, et al. The potential of the Ekso exoskeleton for affecting long-term health and well-being in the SCI population. Proceedings from the Academy of Spinal Cord Injury Professionals. 31 Aug–3 Sept 2012. Las Vegas; 2012.

    Google Scholar 

  21. Indego: Company. 2015. http://www.indego.com/indego/en/media-downloads. Accessed 5 Aug 2015.

  22. Ha K, Murray S, Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng. 2015. doi:10.1109/TNSRE.2015.2421052.

    Google Scholar 

  23. Indego Brochure & Spec Sheet. 2015. http://www.indego.com/indego/en/media-downloads. Accessed 7 Dec 2015.

  24. Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil. 2015;21:122–32. http://dx.doi.org/10.1310/sci2102-122.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015;21:93–9. http://dx.doi.org/10.1310/sci2102-93.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Cyberdyne—HAL for Medical Use (Lower Limb Type). http://www.cyberdyne.jp/english/products/LowerLimb_medical.html. 2015. Accessed 6 Aug 2015.

  27. Ryall J. Robot suit to help in fukushima clean-up. In: The Telegraph: Telegraph Media Group. 2011. http://www.telegraph.co.uk/news/science/science-news/8876233/Robot-suit-to-help-in-Fukushima-clean-up.html.

  28. CYBERDYNE Inc. has begun seeking approval from the U.S. Food and Drug Administration (FDA). 2015. http://www.cyberdyne.jp/english/company/PressReleases_detail.html?id=1075. Accessed on 14 May 2015.

  29. Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141. doi:10.1186/1471-2377-13-141.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Kawamoto H, et al. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. In: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010 1–4 Sept. Buenos Aires; 2010. p. 462–6.

    Google Scholar 

  31. Bogue R. Exoskeletons and robotic prosthetics: a review of recent developments. Ind Robot Int J. 2009;36(5):421–7. http://dx.doi.org/10.1108/01439910910980141.

    CrossRef  Google Scholar 

  32. Maeshima S, Osawa A, Nishio D, Hirano Y, Takeda K, Kigawa H, et al. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurol. 2011;11:116. doi:10.1186/1471-2377-11-116.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Tsukahara A, Hasegawa Y, Eguchi K, Sankai Y. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. IEEE Trans Neural Syst Rehabil Eng. 2015;23:308–18. doi:10.1109/TNSRE.2014.2364618.

    CrossRef  PubMed  Google Scholar 

  34. Wall A, Borg J, Palmcrtantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training—a systemtic review. Front Neurosci. 2015;9:48. doi:10.3389/fnsys.2015.00048.

    Google Scholar 

  35. Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton—the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil. 2014;11:92. doi:10.1186/1743-0003-11-92.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RC, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14:2847–53. doi:10.1016/j.spinee.2014.03.042.

    CrossRef  PubMed  Google Scholar 

  37. Shimada H, Kimura Y, Suzuki T, Hirata T, Sugiura M, Endo Y, et al. The use of positron emission tomography and [18F]fluorodeoxyglucose for functional imaging of muscular activity during exercise with a stride assistance system. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):442–8. doi:10.1109/TNSRE.2007.903978.

    CrossRef  PubMed  Google Scholar 

  38. Walking assist device with stride management system. 2015. http://corporate.honda.com/innovation/walk-assist/. Accessed 9 Jun 2015.

  39. Kitatani R, Ohata K, Takahashi H, Shibuta S, Hashiguchi Y, Yamakami N. Reduction in energy expenditure during walking using an automated stride assistance device in healthy young adults. Arch Phys Med Rehabil. 2014;95:2128–33. doi:10.1016/j.apmr.2014.07.008.

    CrossRef  PubMed  Google Scholar 

  40. Taga G, Yamaguchi Y, Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern. 1991;65:147–59.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Shimada H, Suzuki T, Kimura Y, Hirata T, Sugiura M, Endo Y, et al. Effects of an automated stride assistance system on walking parameters and muscular glucose metabolism in elderly adults. Br J Sports Med. 2008;42:922–9.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Shimada H, Hirata T, Kimura Y, Naka T, Kikuchi K, Oda K, et al. Effects of a robotic walking exercise on walking performance in community-dwelling elderly adults. Geriatr Gerontol Int. 2009;9:372–81.

    CrossRef  PubMed  Google Scholar 

  43. Buesing C, Fisch G, O’Donnell M, Shahidi I, Thomas L, Mummidisetty CK, et al. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2015;12:1. doi:10.1186/s12984-015-0062-0.

    CrossRef  Google Scholar 

  44. Mina. A robotic exoskeleton to help people walk again. 2015. http://www.ihmc.us/research/mina/Mina.php. Accessed 11 Jun 2015.

  45. Anil K. Raj, Peter D. Neuhaus, Adrien M. Moucheboeuf, Jerryll H. Noorden, and David V. Lecoutre, “Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance,” Journal of Robotics, vol. 2011, Article ID 284352, 8 pages, 2011. doi:10.1155/2011/284352

    Google Scholar 

  46. REX bionics—our products. 2015. http://www.rexbionics.com/products/. Accessed 28 May 2015.

  47. Lindsey S. UH, Methodist Hospital Research Institute receive $695K to further robotics research. [Internet]. 2013 Jun 11 [cited 1 May 2015]; Available from: http://www.uh.edu/news-events/stories/2013/june/06112013UHMethodistRoboticsGrant.php.

  48. del Ama AJ, Koutsou AD, Moreno JC, de los Reyes A, Gil Agudo A, Pons JL. Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev. 2012;49:497–514.

    CrossRef  Google Scholar 

  49. Medical devices; physical medicine devices; classification ovf the powered exoskeleton, 2015. Docket No. FDA-2014-N-1903. https://federalregister.gov/a/2015–03692. Accessed 27 May 2015.

  50. Evaluation of automatic class iii designation—de nova request. Department of Health & Human Services. 2014. http://www.accessdata.fda.gov/cdrh_docs/pdf13/DEN130034.pdf. Accessed 27 May 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Jayaraman PT, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Jayaraman, A., Burt, S., Rymer, W.Z. (2016). Using Robotic Exoskeletons for Over-Ground Locomotor Training. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)