Skip to main content

Restoration of Hand Function in Stroke and Spinal Cord Injury

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Neurological injury, such as that resulting from stroke or spinal cord injury, often leads to impairment of the hand. Due to the importance of the hand in so many activities of our lives, diminished motor control can profoundly impact quality of life. In the past 25 years especially, robotic and mechatronic technology has been developed to alleviate some of the functional losses resulting from neurological injury. The devices generally fall into one of two categories based on intended use: assistive technology, programmed to perform specific tasks for the user, and therapeutic technology, designed to facilitate therapeutic practice. Assistive devices are intended for chronic use when neurological recovery has reached a plateau, while the goal of therapeutic devices is to enhance recovery to the point where the devices are no longer needed. In the past, actuated assistance has largely consisted of robotic arms and hands which perform a task for the user. A number of individuals, however, could benefit from actuated hand exoskeletons which make use of residual arm function to position and stabilize the user’s own hand. These devices would be much smaller and could exploit residual sensory information to provide feedback to the user. Recently, therapeutic devices for the hand have begun to utilize increasing knowledge of stroke to target specific impairment mechanisms. While, traditionally, assistive devices have been developed for individuals with spinal cord injury and therapeutic devices have been developed for stroke survivors, individuals with incomplete spinal cord injury may benefit from hand therapy, while stroke survivors with severe hand impairment may see functional benefits from using assistive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunsworth H. Origin of the genus Homo. Evo Edu Outreach. 2010;3:353–66.

    Article  Google Scholar 

  2. Napier JR. Studies of the hands of living primates. Proc Zool Soc Lond. 1960;134:647–57.

    Article  Google Scholar 

  3. Young RW. Evolution of the human hand: the role of throwing and clubbing. J Anat. 2003;202:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marzke MW, Marzke RF. Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat. 2000;197(Pt 1):121–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buffi JH, Crisco JJ, Murray WM. A method for defining carpometacarpal joint kinematics from three-dimensional rotations of the metacarpal bones captured in vivo using computed tomography. J Biomech. 2014;46:2104–8.

    Article  Google Scholar 

  6. Brand PW, Hollister AM. Clinical mechanics of the hand. 3rd ed. St. Louis: Mosby; 1999.

    Google Scholar 

  7. Penfield W, Rasmussen T. The cerebral cortex of man: a clinical study of localization of function. New York: The Macmillan Company; 1950.

    Google Scholar 

  8. Rathelot JA, Strick PL. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci U S A. 2009;106:918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valero-Cuevas FJ, Zajac FE, Burgar CG. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech. 1998;31:693–703.

    Article  CAS  PubMed  Google Scholar 

  10. Darling WG, Cole KJ, Miller GF. Coordination of index finger movements. J Biomech. 1994;27:479–91.

    Article  CAS  PubMed  Google Scholar 

  11. Keen DA, Fuglevand AJ. Common input to motor neurons innervating the same and different compartments of the human extensor digitorum muscle. J Neurophysiol. 2004;91:57–62.

    Article  PubMed  Google Scholar 

  12. Association AM. Guides to the evaluation of permanent impairment. Chicago: American Medical Association; 1990.

    Google Scholar 

  13. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–92.

    Google Scholar 

  14. Roth EJ, Lovell L. Employment after stroke: report of a state of the science symposium. Top Stroke Rehabil. 2014;21 Suppl 1:S75–86.

    Google Scholar 

  15. Kissela BM, Khoury JC, Alwell K, et al. Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology. 2012;79:1781–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. George MG, Tong X, Kuklina EV, Labarthe DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995–2008. Ann Neurol. 2011;70:713–21.

    Article  CAS  PubMed  Google Scholar 

  17. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Article  PubMed  Google Scholar 

  18. Xie J, George MG, Ayala C, et al. Outpatient rehabilitation among stroke survivors—21 states and the district of Columbia, 2005. MMWR: Morb Mortal Wkly Rep. 2007;56:504–7.

    Google Scholar 

  19. Trombly CA. Stroke. In: Trombly CA, editor. Occupational therapy for physical dysfunction. Baltimore: Williams & Wilkins; 1989. p. 454–71.

    Google Scholar 

  20. National Spinal Cord Injury Statistical Center, University of Alabama at Birmingham Department of Physical Medicine and Rehabilitation, at www.nscisc.uab.edu.

  21. Waters RL, Adkins RH, Yakura JS. Definition of complete spinal cord injury. Paraplegia. 1991;29:573–81.

    Article  CAS  PubMed  Google Scholar 

  22. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44:523–9.

    Article  CAS  PubMed  Google Scholar 

  23. Calancie B, Molano MR, Broton JG. Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain: J Neurol. 2002;125:1150–61.

    Article  Google Scholar 

  24. Dietz V, Curt A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol. 2006;5:688–94.

    Article  PubMed  Google Scholar 

  25. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain: J Neurol. 2014;137:654–67.

    Article  Google Scholar 

  26. Yang JF, Stein RB, Jhamandas J, Gordon T. Motor unit numbers and contractile properties after spinal cord injury. Ann Neurol. 1990;28:496–502.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas CK, Zaidner EY, Calancie B, Broton JG, Bigland-Ritchie BR. Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol. 1997;148:414–23.

    Article  CAS  PubMed  Google Scholar 

  28. Hager-Ross CK, Klein CS, Thomas CK. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury. J Neurophysiol. 2006;96:165–74.

    Article  CAS  PubMed  Google Scholar 

  29. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995;270:305–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci: Off J Soc Neurosci. 2003;23:9240–5.

    CAS  Google Scholar 

  31. Altenmuller E, Jabusch HC. Focal dystonia in musicians: phenomenology, pathophysiology and triggering factors. Eur J Neurol. 2010;17 Suppl 1:31–6.

    Article  PubMed  Google Scholar 

  32. Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74:27–55.

    Article  CAS  PubMed  Google Scholar 

  33. Jones TA, Chu CJ, Grande LA, Gregory AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci Off J Soc Neurosci. 1999;19:10153–63.

    Google Scholar 

  34. Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res. 2003;28:1757–69.

    Article  CAS  PubMed  Google Scholar 

  35. Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci: Off J Soc Neurosci. 1994;14:2140–52.

    CAS  Google Scholar 

  36. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:2095–104.

    Article  CAS  PubMed  Google Scholar 

  37. Liepert J, Miltner WH, Bauder H, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett. 1998;250:5–8.

    Article  CAS  PubMed  Google Scholar 

  38. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke; J Cereb Circ. 2000;31:1210–6.

    Article  CAS  Google Scholar 

  39. Hammel J, Hall K, Lees D, et al. Clinical evaluation of a desktop robotic assistant. J Rehabil Res Dev. 1989;26:1–16.

    CAS  PubMed  Google Scholar 

  40. Topping M. An overview of the development of handy 1, a rehabilitation robot to assist the severely disabled. J Intell Robot Syst. 2002;34:253–63.

    Article  Google Scholar 

  41. Song W, Kim J, An K, Lee I, Song W, Lee B, Hwang S, Son M, Lee E. Design of novel feeding robot for Korean food. International conference on smart homes and health telematics. Seoul; 2010.

    Google Scholar 

  42. Jung J, Song W, Lee H, Kim J, Bien Z. A study on the enhancement of manipulation performance of wheelchair-mounted rehabilitation service robot. International conference on rehabilitation robotics. Stanford; 1999.

    Google Scholar 

  43. Bien Z, Park K, Chung MJ. Mobile platform-based assistive robot systems. In: Helal A, Mokhtari M, Abdulrazak B, editors. The engineering handbook of smart technology for aging, disability and independence. Hoboken: Wiley; 2008.

    Google Scholar 

  44. Mahoney RM. The raptor wheelchair robot system. In: Mokhtari M editor. Integration of assistive technology in the information age. Amsterdam, The Netherlands: IOS Press; 2001. p. 135–41.

    Google Scholar 

  45. Driessen BJF, Evers HG, Woerden JA. MANUS—a wheelchair-mounted rehabilitation robot. Proc Inst Mech Eng H J Eng Med. 2001;215:285–90.

    Google Scholar 

  46. Van der Loos M, Michalowski S, Leifer L. Design of an omnidirectional mobile robot as a manipulation aid for the severely disabled. New York: World Rehabilitation Fund; 1986.

    Google Scholar 

  47. Srinivasa S, Ferguson D, Helfrich C, et al. HERB: a home exploring robotic butler. Auton Robot. 2010;28:5–20.

    Article  Google Scholar 

  48. Pfurtscheller G, Guger C, Muller G, Krausz G, Neuper C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett. 2000;292:211–4.

    Article  CAS  PubMed  Google Scholar 

  49. Taylor DM, Tillery SI, Schwartz AB. Information conveyed through brain-control: cursor versus robot. IEEE Trans Neural Syst Rehabil Eng. 2003;11:195–9.

    Article  PubMed  Google Scholar 

  50. Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485:372–5.

    Google Scholar 

  51. Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet (London, England). 2013;381:557–64.

    Google Scholar 

  52. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6:257ra138.

    Google Scholar 

  53. Tabot GA, Dammann JF, Berg JA, et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A. 2013;110:18279–84.

    Google Scholar 

  54. Lucas L, DiCicco M, Matsuoka Y. An EMG-controlled hand exoskeleton for natural pinching. J Robot Mechatron. 2004;16:1–7.

    Article  Google Scholar 

  55. Nilsson M, Ingvast J, Wikander J, von Holst H. The soft extra muscle system for improving the grasping capability in neurological rehabilitation. IEEE Engineering in Medicine and Biology. San Diego: IEEE; 2012. p. 412–7.

    Google Scholar 

  56. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst. 2015;73:135–43.

    Google Scholar 

  57. In H, Kang BB, Sin M, Cho K. Exo-glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot Autom Mag. 2015;22:97–105.

    Article  Google Scholar 

  58. Hu XL, Tong KY, Song R, Zheng XJ, Leung WW. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair. 2009;23:837–46.

    Article  CAS  PubMed  Google Scholar 

  59. Johansson RS, Vallbo AB. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol. 1979;286:283–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Refshauge KM, Kilbreath SL, Gandevia SC. Movement detection at the distal joint of the human thumb and fingers. Exp Brain Res. 1998;122:85–92.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura A, Yamada T, Goto A, et al. Somatosensory homunculus as drawn by MEG. Neuroimage. 1998;7:377–86.

    Article  CAS  PubMed  Google Scholar 

  62. Metzger J-C, Lambercy O, Califfi A, Conti FM, Gassert R. Neurocognitive robot-assisted therapy of hand function. IEEE Trans Haptics. 2013;7:140–9.

    Article  Google Scholar 

  63. Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP, editors. Spasticity: disordered motor control. Chicago: Year Book Medical Publishers; 1980. p. 485–95.

    Google Scholar 

  64. Towles JD, Kamper DG, Rymer WZ. Lack of hypertonia in thumb muscles after stroke. J Neurophysiol. 2010;104:2139–46.

    Google Scholar 

  65. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6:725–33.

    Article  PubMed  Google Scholar 

  66. Mottram CJ, Suresh NL, Heckman CJ, Gorassini MA, Rymer WZ. Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J Neurophysiol. 2009;102:2026–38.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kamper DG, Schmit BS, Rymer WZ. Effect of muscle biomechanics on the quantification of spasticity. Ann Biomed Eng. 2001;29:1122–34.

    Article  CAS  PubMed  Google Scholar 

  68. Seo NJ, Rymer WZ, Kamper DG. Delays in grip initiation and termination in persons with stroke: effects of arm support and active muscle stretch exercise. J Neurophysiol. 2009;101:3108–15.

    Article  PubMed  Google Scholar 

  69. Selles RW, Li X, Lin F, Chung SG, Roth EJ, Zhang LQ. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch Phys Med Rehabil. 2005;86:2330–6.

    Article  PubMed  Google Scholar 

  70. Triandafilou KM, Ochoa J, Kang X, Fischer HC, Stoykov ME, Kamper DG. Transient impact of prolonged versus repetitive stretch on hand motor control in chronic stroke. Top Stroke Rehabil. 2011;18:316–24.

    Google Scholar 

  71. Triandafilou KM, Kamper DG. Carryover effects of cyclical stretching of the digits on hand function in stroke survivors. Arch Phys Med Rehabil. 2014;95:1571–6.

    Google Scholar 

  72. Cruz EG, Kamper DG. Use of a novel robotic interface to study finger motor control. Ann Biomed Eng. 2006;38:259–68.

    Article  Google Scholar 

  73. Brokaw EB, Black I, Holley RJ, Lum PS. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2011;19:391–9.

    Article  PubMed  Google Scholar 

  74. Godfrey SB, Holley RJ, Lum PS. Clinical effects of using HEXORR (Hand Exoskeleton Rehabilitation Robot) for movement therapy in stroke rehabilitation. Am J Phys Med Rehabil/Assoc Acad Physiatrists. 2013;92:947–58.

    Google Scholar 

  75. Cruz EG, Waldinger HC, Kamper DG. Kinetic and kinematic workspaces of the index finger following stroke. Brain: J Neurol. 2005;128:1112–21.

    Article  CAS  Google Scholar 

  76. Triandafilou KM, Fischer HC, Towles JD, Kamper DG, Rymer WZ. Diminished capacity to modulate motor activation patterns according to task contributes to thumb deficits following stroke. J Neurophysiol. 2011;106:1644–51.

    Google Scholar 

  77. Lee SW, Triandafilou K, Lock BA, Kamper DG. Impairment in task-specific modulation of muscle coordination correlates with the severity of hand impairment following stroke. PLoS One. 2013;8:e68745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu XL, Tong KY, Wei XJ, Rong W, Susanto EA, Ho SK. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J Electromyogr Kinesiol: Off J Int Soc Electrophysiol Kinesiol. 2013;23:1065–74.

    Article  CAS  Google Scholar 

  79. Lee SW, Landers KA, Park HS. Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke. IEEE Trans Neural Syst Rehabil Eng: Publ IEEE Eng Med Biol Soc. 2014;22:886–98.

    Article  Google Scholar 

  80. Lemon RN. The G. L. Brown prize lecture. Cortical control of the primate hand. Exp Physiol. 1993;78:263–301.

    Article  CAS  PubMed  Google Scholar 

  81. Olivier E, Edgley SA, Armand J, Lemon RN. An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci: Off J Soc Neurosci. 1997;17:267–76.

    CAS  Google Scholar 

  82. Lang CE, Schieber MH. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J Neurophysiol. 2004;91:1722–33.

    Article  PubMed  Google Scholar 

  83. Friedman N, Chan V, Reinkensmeyer AN, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Taheri H, Rowe JB, Gardner D, et al. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play. J Neuroeng Rehabil. 2014;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Connelly L, Jia Y, Toro ML, Stoykov ME, Kenyon RV, Kamper DG. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng: Publ IEEE Eng Med Biol Soc. 2010;18:551–9.

    Article  Google Scholar 

  86. Thielbar KO, Lord TJ, Fischer HC, et al. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil. 2014;11:171.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Aszmann OC, Roche AD, Salminger S, et al. Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet. 2015;385:2183–9.

    Article  PubMed  Google Scholar 

  88. Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9.

    CAS  PubMed  Google Scholar 

  89. Merians AS, Fluet GG, Qiu Q, et al. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J Neuroeng Rehabil. 2011;8:27.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Godfrey SB, Holley RJ, Lum PS. Clinical effects of using HEXORR (Hand Exoskeleton Rehabilitation Robot) for movement therapy in stroke rehabilitation. Am J Phys Med Rehabil/Assoc Acad Physiatrists. 2013;92:947–58.

    Article  Google Scholar 

  91. Susanto EA, Tong RK, Ockenfeld C, Ho NS. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. J Neuroeng Rehabil. 2015;12:42.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Polygerinos P, Galloway KC, Savage E, Herman M, O’Donnell K, Walsh CJ. Soft robotic glove for hand rehabilitation and task specific training. International conference on robotics and automation. Seatlle: IEEE; 2015. p. 2913–9.

    Google Scholar 

  93. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23:661–70.

    Article  PubMed  Google Scholar 

  94. Topping M. Flexibot—a multi-functional general purpose service robot. Ind Robot. 2001;28:395–401.

    Article  Google Scholar 

  95. Kamper DG, Rymer WZ. Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve. 2000;23:954–61.

    Article  CAS  PubMed  Google Scholar 

  96. Kamper DG, Harvey RL, Suresh S, Rymer WZ. Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve. 2003;28:309–18.

    Article  CAS  PubMed  Google Scholar 

  97. Hoffmann G, Conrad MO, Qiu D, Kamper DG. Contributions of voluntary activation deficits to hand weakness after stroke. Top Stroke Rehabil. 2016;15:1–9 [Epub ahead of print].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Kamper PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Kamper, D.G. (2016). Restoration of Hand Function in Stroke and Spinal Cord Injury. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics