Skip to main content

Clinical Application of Rehabilitation Technologies in Children Undergoing Neurorehabilitation

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

The application of rehabilitation technologies in children with neurological impairments appears promising as these systems can induce repetitive goal-directed movements to complement conventional treatments. Characteristics of robotic-supported and computer-assisted training are in line with principles of motor learning and include high numbers of repetitions, prolonged training durations, and online feedback about the patient’s active participation. When experienced therapists apply these technologies, they can be considered a rather safe and in combination with virtual realities a motivating supplementary approach. Therapists might have to take into account that there might be some factors that are different when applying such technologies to children with congenital versus acquired neurological lesions. Currently, clinical guidelines on how to apply such technologies are missing, and clinical evidence considering the effectiveness of such technologies has just started to commence in pediatric neurorehabilitation. Experienced therapists formulated recommendations that might be useful to those with less experience on how to apply some of these systems to train the lower and upper extremity intensively and playfully. Finally, suggestions are made on how these technologies could be integrated into the clinical path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Shea TM. Diagnosis, treatment, and prevention of cerebral palsy. Clin Obstet Gynecol. 2008;51:816–28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mayston M. Evidence-based physical therapy for the management of children with cerebral palsy. Dev Med Child Neurol. 2005;47:795.

    Article  PubMed  Google Scholar 

  3. Mayston MJ. People with cerebral palsy: effects of and perspectives for therapy. Neural Plast. 2001;8:51–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verschuren O, Ada L, Maltais DB, Gorter JW, Scianni A, Ketelaar M. Muscle strengthening in children and adolescents with spastic cerebral palsy: considerations for future resistance training protocols. Phys Ther. 2011;91:1130–9.

    Article  PubMed  Google Scholar 

  5. Salem Y, Godwin EM. Effects of task-oriented training on mobility function in children with cerebral palsy. NeuroRehabilitation. 2009;24:307–13.

    PubMed  Google Scholar 

  6. World Health Organisation ICoF. Disability and health, child & youth version: ICF-CY. Geneva: WHO; 2007.

    Google Scholar 

  7. Berker AN, Yalcin MS. Cerebral palsy: orthopedic aspects and rehabilitation. Pediatr Clin North Am. 2008;55:1209–25. ix.

    Article  PubMed  Google Scholar 

  8. Damiano DL, Alter KE, Chambers H. New clinical and research trends in lower extremity management for ambulatory children with cerebral palsy. Phys Med Rehabil Clin N Am. 2009;20:469–91.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86:1534–40.

    Article  PubMed  Google Scholar 

  10. Holden MK. Virtual environments for motor rehabilitation: review. Cyberpsychol Behav. 2005;8:187–211, discussion 212–9.

    Article  PubMed  Google Scholar 

  11. Brutsch K, Koenig A, Zimmerli L, Merillat-Koeneke S, Riener R, Jancke L, et al. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. J Rehabil Med. 2011;43:493–9.

    Article  PubMed  Google Scholar 

  12. Brutsch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lunenburger L, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koenig A, Wellner M, Koneke S, Meyer-Heim A, Lunenburger L, Riener R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 2008;132:204–9.

    PubMed  Google Scholar 

  14. Labruyere R, Gerber CN, Birrer-Brutsch K, Meyer-Heim A, van Hedel HJ. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil. 2013;34:3906–15.

    Article  PubMed  Google Scholar 

  15. Schuler T, Brutsch K, Muller R, van Hedel HJ, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: a surface electromyography study. NeuroRehabilitation. 2011;28:401–11.

    PubMed  Google Scholar 

  16. Bilodeau EA, Bilodeau IM. Motor-skills learning. Annu Rev Psychol. 1961;12:243–80.

    Article  Google Scholar 

  17. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22:111–21.

    Article  PubMed  Google Scholar 

  18. Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–84.

    Article  PubMed  Google Scholar 

  19. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.

    Article  PubMed  Google Scholar 

  20. Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251:944–7.

    Article  CAS  PubMed  Google Scholar 

  21. Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hornby TG, Reinkensmeyer DJ, Chen D. Manually-assisted versus robotic-assisted body weight-supported treadmill training in spinal cord injury: what is the role of each? PM R. 2010;2:214–21.

    Article  PubMed  Google Scholar 

  23. Winstein C, Wing AM, Whitall J. Motor control and learning principles for rehabilitation of upper limb movements after brain injury. In: Grafman J, Robertson IH, editors. Handbook of neuropsychology. 2nd ed. Philadelphia: Elsevier; 2003.

    Google Scholar 

  24. Bernstein N. The coordination and regulation of movements. New York: Pergamon; 1967.

    Google Scholar 

  25. Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006;26:10564–8.

    Article  CAS  PubMed  Google Scholar 

  26. Duschau-Wicke A, Caprez A, Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010;7:43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18:38–48.

    Article  PubMed  Google Scholar 

  28. Krishnan C, Kotsapouikis D, Dhaher YY, Rymer WZ. Reducing robotic guidance during robot-assisted gait training improves gait function: a case report on a stroke survivor. Arch Phys Med Rehabil. 2013;94:1202–6.

    Article  PubMed  Google Scholar 

  29. Lee C, Won D, Cantoria MJ, Hamlin M, de Leon RD. Robotic assistance that encourages the generation of stepping rather than fully assisting movements is best for learning to step in spinally contused rats. J Neurophysiol. 2011;105:2764–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schuck A, Labruyere R, Vallery H, Riener R, Duschau-Wicke A. Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J Neuroeng Rehabil. 2012;9:31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002;3:228–36.

    Article  CAS  PubMed  Google Scholar 

  32. Jennings KD, Connors RE, Stegman CE. Does a physical handicap alter the development of mastery motivation during the preschool years? J Am Acad Child Adolesc Psychiatry. 1988;27:312–7.

    Article  CAS  PubMed  Google Scholar 

  33. Messier J, Ferland F, Majnemer A. Play behavior of school age children with intellectual disability: their capacities, interests and attitude. J Dev Phys Disabil. 2008;20:193–207.

    Article  Google Scholar 

  34. Majnemer A, Shevell M, Law M, Poulin C, Rosenbaum P. Level of motivation in mastering challenging tasks in children with cerebral palsy. Dev Med Child Neurol. 2010;52:1120–6.

    Article  PubMed  Google Scholar 

  35. Aurich (-Schuler) T, Warken B, Graser JV, Ulrich T, Borggraefe I, Heinen F, et al. Practical recommendations for robot-assisted treadmill therapy (Lokomat®) in children with cerebral palsy: indications, goal setting, and clinical implementation within the WHO-ICF framework. Neuropediatrics. 2015;46:248–60.

    Article  Google Scholar 

  36. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49:900–6.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schafer J, Sennhauser FH, Heinen F, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94:615–20.

    Article  CAS  PubMed  Google Scholar 

  38. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14:496–502.

    Article  PubMed  Google Scholar 

  39. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, Meyer-Heim A, et al. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46:125–31.

    CAS  PubMed  Google Scholar 

  40. Arellano-Martinez IT, Rodriguez-Reyes G, Quinones-Uriostegui I, Arellano-Saldana ME. Spatial-temporal analysis and clinical findings of gait: comparison of two modalities of treatment in children with cerebral palsy-spastic hemiplegia. Preliminary report. Cir Cir. 2013;81:14–20.

    PubMed  Google Scholar 

  41. Borggraefe I, Klaiber M, Schuler T, Warken B, Schroeder SA, Heinen F, et al. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: a bi-centre survey. Dev Neurorehabil. 2010;13:114–9.

    Article  PubMed  Google Scholar 

  42. Druzbicki M, Rusek W, Szczepanik M, Dudek J, Snela S. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng Biomech. 2010;12:53–8.

    PubMed  Google Scholar 

  43. Schmartz AC, Meyer-Heim AD, Muller R, Bolliger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011;6:29–37.

    Article  PubMed  Google Scholar 

  44. Patritti B, Sicari M, Deming L, Romaguera F, Pelliccio M, Benedetti MG, et al. Enhancing robotic gait training via augmented feedback. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2271–4.

    PubMed  Google Scholar 

  45. Aurich Schuler T, Muller R, van Hedel HJ. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. J Neuroeng Rehabil. 2013;10:78.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Van Hedel HJ, Meyer-Heim A, Rüsch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy: brief report. Dev Neurorehabil. 2015.

    Google Scholar 

  47. Schroeder AS, Homburg M, Warken B, Auffermann H, Koerte I, Berweck S, et al. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur J Paediatr Neurol. 2014;18:502–10.

    Article  CAS  PubMed  Google Scholar 

  48. Schroeder AS, Von Kries R, Riedel C, Homburg M, Auffermann H, Blaschek A, et al. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2014;56:1172–9.

    Article  PubMed  Google Scholar 

  49. Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90:137–49.

    Article  PubMed  Google Scholar 

  50. Druzbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, et al. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med. 2013;45:358–63.

    Article  PubMed  Google Scholar 

  51. Mehrholz J, Hadrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012;6:CD006876.

    PubMed  Google Scholar 

  52. Meyer-Heim A, van Hedel HJ. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol. 2013;20:139–45.

    Article  PubMed  Google Scholar 

  53. Fasoli SE, Fragala-Pinkham M, Hughes R, Hogan N, Krebs HI, Stein J. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil/Assoc Acad Physiatrists. 2008;87:929–36.

    Article  Google Scholar 

  54. Frascarelli F, Masia L, Di Rosa G, Cappa P, Petrarca M, Castelli E, et al. The impact of robotic rehabilitation in children with acquired or congenital movement disorders. Eur J Phys Rehabil Med. 2009;45:135–41.

    CAS  PubMed  Google Scholar 

  55. Masia L, Frascarelli F, Morasso P, Di Rosa G, Petrarca M, Castelli E, et al. Reduced short term adaptation to robot generated dynamic environment in children affected by cerebral palsy. J Neuroeng Rehabil. 2011;8:28.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krebs HI, Fasoli SE, Dipietro L, Fragala-Pinkham M, Hughes R, Stein J, et al. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabil Neural Repair. 2012;26:855–60.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qiu Q, Ramirez DA, Saleh S, Fluet GG, Parikh HD, Kelly D, et al. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J Neuroeng Rehabil. 2009;6:40.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fluet GG, Qiu Q, Kelly D, Parikh HD, Ramirez D, Saleh S, et al. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil. 2010;13:335–45.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Galvin J, McDonald R, Catroppa C, Anderson V. Does intervention using virtual reality improve upper limb function in children with neurological impairment: a systematic review of the evidence. Brain Inj. 2011;25:435–42.

    Article  PubMed  Google Scholar 

  60. Reid D, Campbell K. The use of virtual reality with children with cerebral palsy: a pilot randomized trial. Ther Recreation J. 2006;40:255–68.

    Google Scholar 

  61. Wille D, Eng K, Holper L, Chevrier E, Hauser Y, Kiper D, et al. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment – a pilot study. Dev Neurorehabil. 2009;12:44–52.

    Article  PubMed  Google Scholar 

  62. Van Hedel H, Wick K, Eng K, Meyer-Heim A. Improving dexterity in children with cerebral palsy – preliminary results of a randomized trial evaluating a glove based VR-system. Int Conf Virtual Rehabil. 2011:127–32.

    Google Scholar 

  63. Bouri M, Baur C, Clavel R, Newman CJ, Zedka M. “Handreha”: a new hand and wrist haptic device for hemiplegic children. The Sixth International Conference on Advances in Computer-Human Interactions, Nice, France; 2013. p. 286–92.

    Google Scholar 

  64. Aubin PM, Sallum H, Walsh C, Stirling L, Correia A. A pediatric robotic thumb exoskeleton for at-home rehabilitation: the isolated orthosis for thumb actuation (IOTA). IEEE Int Conf Rehabil Robot. 2013;2013:6650500.

    PubMed  Google Scholar 

  65. Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, et al. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabil Neural Repair. 2015;29:183–92.

    Article  PubMed  Google Scholar 

  66. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14:378–89.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are especially grateful to the occupational therapists Jan Lieber, Karin Gygax, and Annina Herzog who shared much of their knowledge (paragraphs upper extremity devices). We thank the physical therapists Judith Graser, Petra Marsico, and Sandra Ricklin for their feedback. Furthermore, we thank the young persons, their parents, and the companies who approved that their pictures could be used. Some of the work presented in this chapter is based on scientific projects financially supported by the Mäxi Foundation, the Fondation Gaydoul, and the Clinical Research Priority Program Neurorehabilitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubertus J. A. van Hedel PhD, PT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

van Hedel, H.J.A., Aurich (-Schuler), T. (2016). Clinical Application of Rehabilitation Technologies in Children Undergoing Neurorehabilitation. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics