Skip to main content

Clinical Application of Robotics and Technology in the Restoration of Walking

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Robots for neurorehabilitation have been designed principally to automate repetitive labor-intensive training and to support therapists and patients during different stages of rehabilitation. Devices designed for body weight-supported treadmill training are promising task-oriented tools intended to assist in the restoration of gait. In early rehabilitation, robots provide a safe environment through the use of a suspension harness and assistance in achieving a more physiological gait pattern while promoting a high number of repetitions. In the later stages of rehabilitation, more sophisticated control strategies, virtual environment scenarios, or the possibility to address specific gait deficits by modulating different parameters extends their application. Scientific and clinical evidence for the effectiveness, safety, and tolerability of these devices exists; however documentation of their comparative advantages to conventional therapies is limited.

This might be due to the lack of appropriate selection parameters of locomotor training interventions based on functional impairments. Despite this shortcoming, robotic devices are being integrated into clinical settings with promising results. Appropriate use is dependent on the clinicians’ knowledge of different robotic devices as well as the ability to utilize the devices’ technical features, thereby allowing patients to benefit from robot-aided gait training throughout the rehabilitation continuum with the ultimate goal of safe and efficient overground walking.

This chapter will provide an overview on the rationales of introducing robots into the clinic and discuss their value in various neurological diagnoses. In addition, recommendations for goal setting and practice of robot-assisted training based on disease-related symptoms and functional impairment are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–39.

    Article  PubMed  Google Scholar 

  3. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    Article  CAS  PubMed  Google Scholar 

  4. Dietz V. Neuronal plasticity after a human spinal cord injury: Positive and negative effects.” Exp Neurol. 2011;235(1):110–115.

    Google Scholar 

  5. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–67.

    Article  CAS  PubMed  Google Scholar 

  6. Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1611–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22(3–5):281–99.

    PubMed  Google Scholar 

  8. Dromerick AW, Lum PS, Hidler J. Activity-based therapies. Neurorx. 2006;3(4):428–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344(6189):1250–5.

    Article  CAS  PubMed  Google Scholar 

  10. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96(5):1954–60.

    Article  CAS  PubMed  Google Scholar 

  11. Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354(9174):191–6.

    Article  CAS  PubMed  Google Scholar 

  12. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, Roy RR. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    CAS  PubMed  Google Scholar 

  13. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619–30.

    Article  PubMed  Google Scholar 

  14. Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004;6:497–525.

    Article  CAS  PubMed  Google Scholar 

  15. Esquenazi A, Lee S, Packel AT, Braitman L. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PMR. 2013;5(4):280–90.

    Article  Google Scholar 

  16. Esquenazi A, Packel A. Robotic-assisted gait training and restoration. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S217–27; quiz S28–31.

    Article  PubMed  Google Scholar 

  17. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    CAS  PubMed  Google Scholar 

  18. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  19. Banala SK, Agrawal SK, Scholz JP, editors. Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE 10th international conference on rehabilitation robotics; 12–15 June 2007, Noordwjik, 2007.

    Google Scholar 

  20. Mantone J. Getting a leg up? Rehab patients get an assist from devices such as HealthSouth’s AutoAmbulator, but the robots’ clinical benefits are still in doubt. Mod Healthc. 2006;36(7):58–60.

    PubMed  Google Scholar 

  21. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–8.

    CAS  PubMed  Google Scholar 

  22. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schmidt H, Hesse S, Bernhardt R, Krüger J. HapticWalker. A novel haptic foot device. ACM Trans Appl Percept. 2005;2(2):166–80.

    Article  Google Scholar 

  24. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7–8):625–32.

    Article  PubMed  Google Scholar 

  25. Riener R. Robot-aided rehabilitation of neural function in the upper extremities. Acta Neurochir Suppl. 2007;97(Pt 1):465–71.

    CAS  PubMed  Google Scholar 

  26. Esquenazi A, Talaty M. Gait analysis: technology and clinical application. In: Braddom RL, editor. Physical medicine and rehabilitation. 4th ed. Philadelphia: Saunders, Elsevier; 2011. p. 99–116.

    Chapter  Google Scholar 

  27. Barbeau H, Ladouceur M, Norman KE, Pepin A, Leroux A. Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehabil. 1999;80(2):225–35.

    Article  CAS  PubMed  Google Scholar 

  28. Barbeau H, Rossignol S. Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol. 1994;7(6):517–24.

    Article  CAS  PubMed  Google Scholar 

  29. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80(7):688–700.

    CAS  PubMed  Google Scholar 

  30. Dietz V, Colombo G, Jensen L. Locomotor-activity in spinal man. Lancet. 1994;344(8932):1260–3.

    Article  CAS  PubMed  Google Scholar 

  31. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–82.

    Article  CAS  PubMed  Google Scholar 

  32. Field-Fote EC. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Phys Ther. 2000;80(5):477–84.

    CAS  PubMed  Google Scholar 

  33. Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther. 1991;71(11):842–55.

    CAS  PubMed  Google Scholar 

  34. Wernig A, Müller S. Laufband locomotion with body-weight support improved walking in persons with severe spinal-cord injuries. Paraplegia. 1992;30(4):229–38.

    Article  CAS  PubMed  Google Scholar 

  35. Teixeira da Cunha Filho I, Lim PAC, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev. 2001;38:245–55.

    CAS  PubMed  Google Scholar 

  36. JR Teixeira da Cunha I, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil. 2002;83(9):1258–65.

    Article  Google Scholar 

  37. Hesse S, Bertelt C, Jahnke MT, Schaffrin A, Baake P, Malezic M, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke J Cereb Circ. 1995;26(6):976–81.

    Article  CAS  Google Scholar 

  38. Laufer Y, Dickstein R, Chefez Y, Marcovitz E. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study. J Rehabil Res Dev. 2001;38(1):69–78.

    CAS  PubMed  Google Scholar 

  39. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke J Cereb Circ. 2002;33(2):553–8.

    Article  Google Scholar 

  40. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil. 2002;83(5):683–91.

    Article  PubMed  Google Scholar 

  41. Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke J Cereb Circ. 1998;29(6):1122–8.

    Article  CAS  Google Scholar 

  42. Freund JE, Stetts DM. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract. 2010;26(7):447–58.

    Google Scholar 

  43. Willoughby KL, Dodd KJ, Shields N. A systematic review of the effectiveness of treadmill training for children with cerebral palsy. Disabil Rehabil. 2009;31(24):1971–9.

    Article  PubMed  Google Scholar 

  44. Benedetti MG, Gasparroni V, Stecchi S, Zilioli R, Straudi R, Piperno R. Treadmill exercise in early multiple sclerosis: a case series study. Eur J Phys Rehabil Med. 2009;45(1):53–9.

    CAS  PubMed  Google Scholar 

  45. Giesser B, Beres-Jones J, Budovitch A, Herlihy E, Harkema S. Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study. Mult Scler. 2007;13(2):224–31.

    Article  PubMed  Google Scholar 

  46. Newman MA, Dawes H, van den Berg M, Wade DT, Burridge J, Izadi H. Can aerobic treadmill training reduce the effort of walking and fatigue in people with multiple sclerosis: a pilot study. Mult Scler. 2007;13(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  47. van den Berg M, Dawes H, Wade DT, Newman M, Burridge J, Izadi H, et al. Treadmill training for individuals with multiple sclerosis: a pilot randomised trial. J Neurol Neurosurg Psychiatry. 2006;77(4):531–3.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil. 2002;83(10):1370–3.

    Article  PubMed  Google Scholar 

  49. Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, et al. Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil. 2000;81(7):849–52.

    Article  CAS  PubMed  Google Scholar 

  50. Pohl M, Rockstroh G, Ruckriem S, Mrass G, Mehrholz J. Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Arch Phys Med Rehabil. 2003;84(12):1760–6.

    Article  PubMed  Google Scholar 

  51. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387–416.

    Article  PubMed  Google Scholar 

  52. Hornby TG, Reinkensmeyer DJ, Chen D. Manually-assisted versus robotic-assisted body weight-supported treadmill training in spinal cord injury: what is the role of each? PM R. 2010;2(3):214–21.

    Article  PubMed  Google Scholar 

  53. Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–94.

    Article  PubMed  Google Scholar 

  54. Duschau-Wicke A, Caprez A, Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010;7:43.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Banz R, Bolliger M, Muller S, Santelli C, Riener R. A method of estimating the degree of active participation during stepping in a driven gait orthosis based on actuator force profile matching. IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):15–22.

    Article  PubMed  Google Scholar 

  56. Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lunenburger L, Colombo G, Riener R, Dietz V. Biofeedback in gait training with the robotic orthosis Lokomat. Conference proceedings of IEEE engineering in medicine and biology society. San Francisco, CA, USA; September 1st–5th 2004;7:4888–91

    Google Scholar 

  58. Brutsch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lunenburger L, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Koenig A, Wellner M, Koneke S, Meyer-Heim A, Lunenburger L, Riener R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 2008;132:204–9.

    PubMed  Google Scholar 

  60. Lunenburger L, Wellner M, Banz R, Colombo G, Riener R. Combining immersive virtual environments with robot-aided gait training. 10th International Conference on Rehabilitation Robotics (ICORR), 13–15 June 2007, Noordwijk, 2007.

    Google Scholar 

  61. Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord. 2008;23(2):280–3.

    Article  PubMed  Google Scholar 

  62. Hesse S, Werner C, von Frankenberg S, Bardeleben A. Treadmill training with partial body weight support after stroke. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S111–23.

    Article  PubMed  Google Scholar 

  63. Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair. 2008;22(6):661–71.

    Article  PubMed  Google Scholar 

  64. Westlake KP, Patten C. Pilot study of lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    Article  PubMed  Google Scholar 

  66. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    Article  PubMed  Google Scholar 

  67. Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke J Cereb Circ. 2007;38(2):349–54.

    Article  Google Scholar 

  68. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.

    Article  PubMed  Google Scholar 

  69. Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PMR. 2009;1(6):516–23.

    Article  Google Scholar 

  70. Esquenazi A. Kinematic differences during pathological walking with three rehabilitation interventions. International neurorehabilitation symposium, Zurich, 2013.

    Google Scholar 

  71. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002;72(4):473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT. Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry. 1992;55(7):530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.

    Article  PubMed  Google Scholar 

  74. Dhamoon MS, Moon YP, Paik MC, Boden-Albala B, Rundek T, Sacco RL, et al. Long-term functional recovery after first ischemic stroke: the Northern Manhattan Study. Stroke J Cereb Circ. 2009;40(8):2805–11.

    Article  Google Scholar 

  75. Johnston M, Pollard B, Morrison V, MacWalter R. Functional limitations and survival following stroke: psychological and clinical predictors of 3-year outcome. Int J Behav Med. 2004;11(4):187–96.

    Article  PubMed  Google Scholar 

  76. Jorgensen HS, Reith J, Nakayama H, Kammersgaard LP, Raaschou HO, Olsen TS. What determines good recovery in patients with the most severe strokes? The Copenhagen Stroke Study. Stroke J Cereb Circ. 1999;30(10):2008–12.

    Article  CAS  Google Scholar 

  77. Kollen BJ, Lennon S, Lyons B, Wheatley-Smith L, Scheper M, Buurke JH, et al. The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke J Cereb Circ. 2009;40(4):e89–97.

    Article  Google Scholar 

  78. Pollock A, Baer G, Langhorne P, Pomeroy V. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke: a systematic review. Clin Rehabil. 2007;21(5):395–410.

    Article  PubMed  Google Scholar 

  79. Bernhardt J, Dewey H, Thrift A, Collier J, Donnan G. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility. Stroke J Cereb Circ. 2008;39(2):390–6.

    Article  Google Scholar 

  80. Ferrarello F, Baccini M, Rinaldi LA, Cavallini MC, Mossello E, Masotti G, et al. Efficacy of physiotherapy interventions late after stroke: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(2):136–43.

    Article  PubMed  Google Scholar 

  81. Divani AA, Vazquez G, Barrett AM, Asadollahi M, Luft AR. Risk factors associated with injury attributable to falling among elderly population with history of stroke. Stroke J Cereb Circ. 2009;40(10):3286–92.

    Article  Google Scholar 

  82. Esquenazi A. Falls and fractures in older post-stroke patients with spasticity: consequences and drug treatment considerations. Clin Geriatr. 2004;12(8):27–35.

    Google Scholar 

  83. Nichol MB, Shi SG, Knight TK, Esquenazi A, Barron R. Risk of hip or vertebral fracture in stroke survivors using antispasticity medications: a case-control study. J Outcome Res. 2006;10:1–11.

    Google Scholar 

  84. Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002;125(Pt 12):2626–34.

    Article  PubMed  Google Scholar 

  85. Globas C, Macko RF, Luft AR. Role of walking-exercise therapy after stroke. Expert Rev Cardiovasc Ther. 2009;7(8):905–10.

    Article  PubMed  Google Scholar 

  86. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Forrester LW, Wheaton LA, Luft AR. Exercise-mediated locomotor recovery and lower-limb neuroplasticity after stroke. J Rehabil Res Dev. 2008;45(2):205–20.

    Article  PubMed  Google Scholar 

  88. Elovic E, Antoinette T. Epidemiology and primary prevention of traumatic brain injury. In: Horn LJ, Zasler ND, editors. Medical rehabilitation of traumatic brain injury. Philadelphia: Hanley & Belfus; 1996.

    Google Scholar 

  89. Williams G, Morris ME, Schache A, McCrory PR. Incidence of gait abnormalities after traumatic brain injury. Arch Phys Med Rehabil. 2009;90(4):587–93.

    Article  PubMed  Google Scholar 

  90. Perry J, Burnfield JM. Pathological mechanisms. In: Perry J, editor. Gait analysis: normal and pathological function; Thorofare, New Jersey, USA. 2010.

    Google Scholar 

  91. Consortium_for_Spinal_Cord_Medicine. Outcomes following traumatic spinal cord injury: clinical practice guidelines for health-care professionals. J Spinal Cord Med. 2000;23(4):289–316.

    Google Scholar 

  92. Model_Systems_Knowledge_Translation_Center. Spinal Cord Injury Factsheets [cited 2015 August]. Available from: http://www.msktc.org/sci/factsheets.

  93. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34(6):535–46.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kirshblum SC, Waring W, Biering-Sorensen F, Burns SP, Johansen M, Schmidt-Read M, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34(6):547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schuld C, Wiese J, Hug A, Putz C, Hedel HJ, Spiess MR, et al. Computer implementation of the international standards for neurological classification of spinal cord injury for consistent and efficient derivation of its subscores including handling of data from not testable segments. J Neurotrauma. 2011;29(3):453–61.

    Article  PubMed  Google Scholar 

  96. Furlan JC, Fehlings MG, Tator CH, Davis AM. Motor and sensory assessment of patients in clinical trials for pharmacological therapy of acute spinal cord injury: psychometric properties of the ASIA Standards. J Neurotrauma. 2008;25(11):1273–301.

    Article  PubMed  Google Scholar 

  97. McKinley W, Santos K, Meade M, Brooke K. Incidence and outcomes of spinal cord injury clinical syndromes. J Spinal Cord Med. 2007;30(3):215–24.

    PubMed  PubMed Central  Google Scholar 

  98. Wirz M, Zorner B, Rupp R, Dietz V. Outcome after incomplete spinal cord injury: central cord versus Brown-Sequard syndrome. Spinal Cord. 2009;48(5):407–14.

    Article  PubMed  Google Scholar 

  99. Steeves JD, Kramer JK, Fawcett JW, Cragg J, Lammertse DP, Blight AR, et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord. 2011;49(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  100. Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87(9):1218–22.

    Article  PubMed  Google Scholar 

  101. Spiess MR, Muller RM, Rupp R, Schuld C, van Hedel HJ. Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J Neurotrauma. 2009;26(11):2027–36.

    Article  PubMed  Google Scholar 

  102. Uhthoff W. Untersuchungen über die bei der multiplen Herdsklerose vorkommenden Augenstörungen. Arch Psychiatr Nervenkrankheiten Berlin. 1890;21:55–116 and 303–410.

    Article  Google Scholar 

  103. Rae-Grant AD. Unusual symptoms and syndromes in multiple sclerosis. Continuum (Minneap Minn). 2013;19(4 Multiple Sclerosis):992–1006.

    Google Scholar 

  104. Doring A, Pfueller CF, Paul F, Dorr J. Exercise in multiple sclerosis—an integral component of disease management. EPMA J. 2011;3(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502.

    Google Scholar 

  106. Schmartz AC, Meyer-Heim AD, Muller R, Bolliger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011;6(1):29–37.

    Article  PubMed  Google Scholar 

  107. Visintin M, Barbeau H. The effects of body weight support on the locomotor pattern of spastic paretic patients. Can J Neurol Sci. 1989;16(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  108. Harkema SJ, Behrman AL, Barbeau H. Locomotor training: principles and practice. 1st ed. New York: Oxford University Press; 2011.

    Book  Google Scholar 

  109. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    Article  PubMed  Google Scholar 

  110. Esquenazi A, Mayer NH. Instrumented assessment of muscle overactivity and spasticity with dynamic polyelectromyographic and motion analysis for treatment planning. Am J Phys Med Rehabil. 2004;83(10 Suppl):S19–29.

    Article  PubMed  Google Scholar 

  111. Schuler T, Brutsch K, Muller R, Hvan Hedel UJ, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: a surface electromyography study. NeuroRehabilitation. 2011;28(4):401–11.

    PubMed  Google Scholar 

  112. Aurich Schuler T, Muller R, van Hedel HJ. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. J Neuroeng Rehabil. 2013;10:78.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Esquenazi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Esquenazi, A. et al. (2016). Clinical Application of Robotics and Technology in the Restoration of Walking. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics