Skip to main content

Group Size

  • Chapter
  • First Online:
  • 3625 Accesses

Abstract

The naturalist John James Audubon famously gave an account of a migration of the now-vanished passenger pigeon (Ectopistes migratorius). After attempting to count the passing flocks that together made up the vast procession, he abandoned this task as impractical and continued on his journey, noting that at the end of a full day’s travelling, the birds still continued to pass by and did so still for several more days thereafter (Audubon 1870). Breeding colonies consisting of hundreds of millions of pairs of these birds were reported during the 1800s, and it is estimated that the largest migrations contained billions of individuals (Schorger 1955). During the latter decades of the nineteenth century, as Americans in the eastern states bore witness to these huge flocks, those living further west were contending with periodic outbreaks of another multitudinous animal, the Rocky Mountain locust (Melanoplus spretus). One infamous swarm of 1875 was estimated to have covered half a million square kilometres and to have contained several trillion locusts (Piper 2007). Like the passenger pigeon, the Rocky Mountain locust was to be extinct shortly after the turn of the century. Today, juveniles of the extant – though declining (Atkinson et al. 2004) – Antarctic krill (Euphausia superba) in the Scotia Sea of the Southern Ocean form super swarms trillions strong that can be 30 m deep and extend over several km, sometimes containing hundreds of individuals per cubic metre. So large are these swarms that the majority of the total population can be contained within just a few such aggregations (Tarling et al. 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott KR, Dukas R (2009) Honeybees consider flower danger in their waggle dance. Anim Behav 78(3):633–635

    Article  Google Scholar 

  • Arroyo BE, De Cornulier T, Bretagnolle V (2002) Parental investment and parent–offspring conflicts during the postfledging period in Montagu’s harriers. Anim Behav 63(2):235–244

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432(7013):100–103

    Article  CAS  PubMed  Google Scholar 

  • Audubon JJ (1870) The birds of America, from drawings made in the United States and their territories, vol 5. GR Lockwood, Neywork

    Google Scholar 

  • Baird RW, Dill LM (1996) Ecological and social determinants of group size in transient killer whales. Behav Ecol 7(4):408–416

    Article  Google Scholar 

  • Beauchamp G (2008) What is the magnitude of the group-size effect on vigilance? Behav Ecol 19(6):1361–1368

    Article  Google Scholar 

  • Beauchamp G, Fernández-Juricic E (2005) The group-size paradox: effects of learning and patch departure rules. Behav Ecol 16(2):352–357

    Article  Google Scholar 

  • Beauchamp G, Livoreil B (1997) The effect of group size on vigilance and feeding rate in spice finches (Lonchura punctulata). Can J Zool 75(9):1526–1531

    Article  Google Scholar 

  • Bonabeau E, Dagorn L (1995) Possible universality in the size distribution of fish schools. Phy Rev E 51(6):R5220

    Article  CAS  Google Scholar 

  • Bonabeau E, Dagorn L, Freon P (1999) Scaling in animal group-size distributions. Proc Natl Acad Sci U S A 96:4472–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkowski J, Furubayashi K (1998) Seasonal and diel variation in group size among Japanese sika deer in different habitats. J Zool 245(1):29–34

    Article  Google Scholar 

  • Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762. doi:10.1016/j.cub.2010.08.041

    Article  CAS  PubMed  Google Scholar 

  • Brown C, Garwood MP, Williamson JE (2012) It pays to cheat: tactical deception in a cephalopod social signalling system. Biol Lett 8(5):729–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Buston P (2003) Forcible eviction and prevention of recruitment in the clown anemonefish. Behav Ecolo 14(4):576–582

    Article  Google Scholar 

  • Cant MA, Hodge SJ, Bell MB, Gilchrist JS, Nichols HJ (2010) Reproductive control via eviction (but not the threat of eviction) in banded mongooses. Proc Roy Soc B Bio Sci 277(1691):2219–26

    Article  Google Scholar 

  • Caraco T, Wolf LL (1975) Ecological determinants of group sizes of foraging lions. Am Nat 109:343–352

    Article  Google Scholar 

  • Carere C, Montanino S, Moreschini F, Zoratto F, Chiarotti F, Santucci D, Alleva E (2009) Aerial flocking patterns of wintering starlings, Sturnus vulgaris, under different predation risk. Anim Behav 77(1):101–107

    Article  Google Scholar 

  • Chapman CA, Lefebvre L (1990) Manipulating foraging group size: spider monkey food calls at fruiting trees. Anim Behav 39(5):891–896

    Article  Google Scholar 

  • Coolen I, Giraldeau LA, Lavoie M (2001) Head position as an indicator of producer and scrounger tactics in a ground-feeding bird. Anim Behav 61(5):895–903

    Article  Google Scholar 

  • Croft DP, Arrowsmith BJ, Bielby J, Skinner K, White E, Couzin ID, Magurran IR, Krause J (2003) Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100(3):429–438

    Article  Google Scholar 

  • Croft DP, James R, Ward AJW, Botham MS, Mawdsley D, Krause J (2005) Assortative interactions and social networks in fish. Oecologia 143:211–219

    Article  CAS  PubMed  Google Scholar 

  • Croxall JP, Silk JR, Phillips RA, Afanasyev V, Briggs DR (2005) Global circumnavigations: tracking year-round ranges of nonbreeding albatrosses. Science 307(5707):249–250

    Article  CAS  PubMed  Google Scholar 

  • D’Ettorre P, Heinze J (2001) Sociobiology of slave-making ants. Acta Etholo 3(2):67–82

    Article  Google Scholar 

  • Davies NB, Krebs JR, West SA (2012) An introduction to behavioural ecology. Wiley

    Google Scholar 

  • Dittus WP (1988) Group fission among wild toque macaques as a consequence of female resource competition and environmental stress. Anim Behav 36(6):1626–1645

    Article  Google Scholar 

  • Dobler R, Kölliker M (2010) Kin-selected siblicide and cannibalism in the European earwig. Behav Ecolo 21(2):257–263

    Article  Google Scholar 

  • Evans RM (1982) Foraging-flock recruitment at a black-billed gull colony: implications for the information center hypothesis. Auk 99:24–30

    Article  Google Scholar 

  • Fish FE (2010) Swimming strategies for energy economy. In: Domenici P, Kapoor BG (eds) Fish swimming: an etho-ecological perspective. Science Publishers, Enfield, pp 90–122

    Google Scholar 

  • Freeberg TM, Lucas JR (2002) Receivers respond differently to chick-a-dee calls varying in note composition in Carolina chickadees Poecile carolinensis. Anim Behav 63(5):837–845

    Article  Google Scholar 

  • Fretwell SD (1972) Populations in a seasonal environment (No. 5). Princeton University Press

    Google Scholar 

  • Furness RW, Birkhead TR (1984) Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311:655–656

    Article  Google Scholar 

  • Gerard JF, Loisel P (1995) Spontaneous emergence of a relationship between habitat openness and mean group size and its possible evolutionary consequences in large herbivores. J Theor Biol 176(4):511–522

    Article  Google Scholar 

  • Gerard JF, Bideau E, Maublanc ML, Loisel P, Marchal C (2002) Herd size in large herbivores: encoded in the individual or emergent? Biol Bull 202(3):275–282

    Article  PubMed  Google Scholar 

  • Giraldeau LA, Caraco T (1993) Genetic relatedness and group size in an aggregation economy. Evol Ecol 7(4):429–438

    Article  Google Scholar 

  • Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Giraldeau LA, Gillis D (1985) Optimal group size can be stable: a reply to Sibly. Anim Behav 33(2):666–667

    Article  Google Scholar 

  • Grand TC, Dill LM (1999) The effect of group size on the foraging behaviour of juvenile coho salmon: reduction of predation risk or increased competition? Anim Behav 58(2):443–451

    Article  PubMed  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311

    Article  CAS  PubMed  Google Scholar 

  • Hamilton IM (2000) Recruiters and joiners: using optimal skew theory to predict group size and the division of resources within groups of social foragers. Am Nat 155(5):684–695

    Article  PubMed  Google Scholar 

  • Heinsohn RG (1991) Kidnapping and reciprocity in cooperatively breeding white-winged choughs. Anim Behav 41(6):1097–1100

    Article  Google Scholar 

  • Herbert-Read JE, Krause S, Morrell LJ, Schaerf TM, Krause J, Ward AJW (2013) The role of individuality in collective group movement. Proc Royal Soc London B Biol Sci 280(1752):20122564

    Article  CAS  Google Scholar 

  • Higashi M, Yamamura N (1993) What determines animal group size? Insider-outsider conflict and its resolution. Am Natu 142:553–563

    Article  Google Scholar 

  • Hoare DJ, Krause J, Peuhkuri N, Godin JG (2000a) Body size and shoaling in fish. J Fish Biol 57(6):1351–1366

    Article  Google Scholar 

  • Hoare DJ, Ruxton GD, Godin JGJ, Krause J (2000b) The social organization of free ranging fish shoals. Oikos 89(3):546–554

    Article  Google Scholar 

  • Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164. doi:10.1016/j.anbehav.2003.04.004

    Article  Google Scholar 

  • Hofer H, East ML (2008) Siblicide in Serengeti spotted hyenas: a long-term study of maternal input and cub survival. Behav Ecol Sociobiol 62(3):341–351

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press

    Google Scholar 

  • Ioannou CC, Morrell LJ, Ruxton GD, Krause J (2009) The effect of prey density on predators: conspicuousness and attack success are sensitive to spatial scale. Am Nat 173(4):499–506

    Article  PubMed  Google Scholar 

  • Ioannou CC, Guttal V, Couzin ID (2012) Predatory fish select for coordinated collective motion in virtual prey. Science 337(6099):1212–1215

    Article  CAS  PubMed  Google Scholar 

  • Jackson DE, Ratnieks FL (2006) Communication in ants. Curr Biol 16(15):R570–R574

    Article  CAS  PubMed  Google Scholar 

  • Judd TM, Sherman PW (1996) Naked mole-rats recruit colony mates to food sources. Anim Behav 52:957–969

    Article  Google Scholar 

  • Keller L, Reeve HK (1994) Partitioning of reproduction in animal societies. Trends Ecol Evol 9(3):98–102

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Williams LJ, Mettke-Hofmann C (2015) The effects of social conformity on Gouldian finch personality. Anim Behav 99:25–31. doi:10.1016/j.anbehav.2014.10.016

    Article  Google Scholar 

  • Kokko H, Johnstone RA, Clutton-Brock TH (2001) The evolution of cooperative breeding through group augmentation. Proc Royal Soc B Biol Sci 268(1463):187–196

    Article  CAS  Google Scholar 

  • Krause J (1993b) The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus) – a field-study. Oecologia 93(3):356–359

    Article  Google Scholar 

  • Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev Camb Philos Soc 69(2):187–206

    Article  CAS  PubMed  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. OUP, Oxford

    Google Scholar 

  • Krause J, Hartmann N, Pritchard VL (1999) The influence of nutritional state on shoal choice in zebrafish, Danio rerio. Anim Behav 57(4):771–775

    Article  PubMed  Google Scholar 

  • Laland KN, Williams K (1998) Social transmission of maladaptive information in the guppy. Behav Ecolo 9:493–499

    Article  Google Scholar 

  • Landeau L, Terborgh J (1986) Oddity and the ‘confusion effect’ in predation. Anim Behav 34(5):1372–1380

    Article  Google Scholar 

  • Lee-Jenkins SS, Smith ML, Wisenden BD, Wong A, Godin JGJ (2015) Genetic evidence for mixed broods and extra-pair matings in a socially monogamous biparental cichlid fish. Behaviour. doi:10.1163/1568539X-00003289

    Google Scholar 

  • Mahurin EJ, Freeberg TM (2009) Chick-a-dee call variation in Carolina chickadees and recruiting flockmates to food. Behav Ecolo 20(1):111–116

    Article  Google Scholar 

  • Metcalfe NB, Thomson BC (1995) Fish recognize and prefer to shoal with poor competitors. Proc Roy Soc London Ser B Biol Sci 259(1355):207–210

    Article  Google Scholar 

  • Mock DW, Parker GA (1998) Siblicide, family conflict and the evolutionary limits of selfishness. Anim Behav 56(1):1–10

    Article  PubMed  Google Scholar 

  • Mock DW, Drummond H, Stinson CH (1990) Avian siblicide. Am Sci 78:438–449

    Google Scholar 

  • Morse DH (1978) Structure and foraging patterns of flocks of tits and associated species in an English woodland during the winter. Ibis 120(3):298–312

    Article  Google Scholar 

  • Müller CA, Bell MB (2009) Kidnapping and infanticide between groups of banded mongooses. Mammalian Biol Zeitschrift für Säugetierkunde 74(4):315–318

    Article  Google Scholar 

  • Nicol CJ (1995) The social transmission of information and behaviour. Appl Anim Behav Sci 44(2):79–98

    Article  Google Scholar 

  • Niwa HS (1998) School size statistics of fish. J Theor Biol 195(3):351–361

    Article  PubMed  Google Scholar 

  • Niwa HS (2003) Power-law versus exponential distributions of animal group sizes. J Theor Biol 224(4):451–457

    Article  PubMed  Google Scholar 

  • Orpwood JE, Magurran AE, Armstrong JD, Griffiths SW (2008) Minnows and the selfish herd: effects of predation risk on shoaling behaviour are dependent on habitat complexity. Anim Behav 76(1):143–152

    Article  Google Scholar 

  • Packer C, Scheel D, Pusey AE (1990) Why lions form groups: food is not enough. Am Nat 136:1–19

    Article  Google Scholar 

  • Palestis BG, Burger J (1998) Evidence for social facilitation of preening in the common tern. Anim Behav 56(5):1107–1111

    Article  PubMed  Google Scholar 

  • Pike TW, Laland KN (2010) Conformist learning in nine-spined sticklebacks’ foraging decisions. Biol Lett 6(4):466–468. rsbl20091014

    Article  PubMed  PubMed Central  Google Scholar 

  • Piper R (2007) Extraordinary animals: an encyclopaedia of curious and unusual animals. Greenwood Publishing Group

    Google Scholar 

  • Piyapong C, Butlin RK, Faria JJ, Scruton KJ, Wang J, Krause J (2011) Kin assortment in juvenile shoals in wild guppy populations. Heredity 106(5):749–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plath M, Richter S, Tiedemann R, Schlupp I (2008) Male fish deceive competitors about mating preferences. Curr Biol 18(15):1138–1141

    Article  CAS  PubMed  Google Scholar 

  • Plath M, Richter S, Schlupp I, Tiedemann R (2010) Misleading mollies: surface-but not cave-dwelling Poecilia mexicana males deceive competitors about mating preferences. Acta Ethol 13(1):49–56

    Article  Google Scholar 

  • Pugesek BH (1990) Parental effort in the California gull: tests of parent-offspring conflict theory. Behav Ecol Sociobiol 27(3):211–215

    Article  Google Scholar 

  • Radford AN (2004) Vocal coordination of group movement by green woodhoopoes (Phoeniculus purpureus). Ethology 110(1):11–20

    Article  Google Scholar 

  • Radford AN, Du Plessis MA (2003) Bill dimorphism and foraging niche partitioning in the green woodhoopoe. J Anim Ecol 72(2):258–269

    Article  Google Scholar 

  • Radford AN, Ridley AR (2006) Recruitment calling: a novel form of extended parental care in an altricial species. Curr Biol 16(17):1700–1704

    Article  CAS  PubMed  Google Scholar 

  • Rieucau G, Giraldeau LA (2009) Persuasive companions can be wrong: the use of misleading social information in nutmeg mannikins. Behav Ecol 20:1217–1222

    Article  Google Scholar 

  • Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435(7039):205–207

    Article  CAS  PubMed  Google Scholar 

  • Schorger AW (1955) The passenger pigeon: its natural history and extinction (Univ of

    Google Scholar 

  • Seeley TD, Mikheyev AS, Pagano GJ (2000) Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. J Comp Physiol A 186(9):813–819

    Article  CAS  PubMed  Google Scholar 

  • Seeley TD (2009) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press

    Google Scholar 

  • Sibly RM (1983) Optimal group size is unstable. Anim Behav 31(3):947–948

    Article  Google Scholar 

  • Smith JM, Harper D (2003) Animal signals. Oxford University Press, New York

    Google Scholar 

  • Sinclair ARE (1977) The African buffalo: a study of resource limitation of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Tarling GA, Klevjer T, Fielding S, Watkins J, Atkinson A, Murphy E, Korb R, Whitehouse M, Leaper R (2009) Variability and predictability of Antarctic krill swarm structure. Deep Sea Res Part I: Oceanograph Res Pap 56(11):1994–2012

    Article  Google Scholar 

  • Trivers RL (1974) Parent-offspring conflict. Am Zool 14(1):249–264

    Article  Google Scholar 

  • Tsubaki Y (1981) Some beneficial effects of aggregation in young larvae of Pryeria sinica Moore (Lepidoptera: Zygaenidae). Res Popul Ecol 23(1):156–167

    Article  Google Scholar 

  • Vehrencamp SL (1978) The adaptive significance of communal nesting in groove-billed anis (Crotophaga sulcirostris). Behav Ecol Sociobiol 4(1):1–33

    Article  Google Scholar 

  • Vehrencamp SL (1983) Optimal degree of skew in cooperative societies. Am Zool 23(2):327–335

    Article  Google Scholar 

  • von Frisch KR (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Ward AJW (2012) Social facilitation of exploration in mosquitofish (Gambusia holbrooki). Behav Ecol Sociobiol 66:223–230

    Article  Google Scholar 

  • Ward AJW, Hart PJB (2003) The effects of kin and familiarity on interactions between fish. Fish Fish 4(4):348–358

    Article  Google Scholar 

  • Webster MM, Hart PJ (2006b) Subhabitat selection by foraging threespine stickleback (Gasterosteus aculeatus): previous experience and social conformity. Behav Ecol Sociobiol 60(1):77–86

    Article  Google Scholar 

  • Wisenden BD, Keenleyside MH (1992) Intraspecific brood adoption in convict cichlids: a mutual benefit. Behav Ecol Sociobiol 31(4):263–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, A., Webster, M. (2016). Group Size. In: Sociality: The Behaviour of Group-Living Animals. Springer, Cham. https://doi.org/10.1007/978-3-319-28585-6_7

Download citation

Publish with us

Policies and ethics