Skip to main content

Abstract

The pineapple, botanically named Ananas comosus, has been used for centuries as a folk medicine by the indigenous inhabitants of Central and South America. The medicinal qualities of the plant are attributed to bromelain, the aqueous extract of the pineapple, which has been available as a pharmaceutical product since 1957. The beneficial effects of bromelain are attributable to its multiple constituents. Bromelain is primarily comprised of sulfhydryl-containing proteolytic enzymes. It also contains escharase (a nonproteolytic component with debriding effects), peroxidases, phosphatases, glucosidases, cellulases, several protease inhibitors, glycoproteins, carbohydrates, and organically bound calcium. Bromelain has been shown to interact with a variety of effectors and pathways involved in physiological processes such as inflammation, immune response, and coagulation. Bromelain has been used as a supplement with health benefits, and also tested, alone or in combination with other agents, in preclinical and clinical settings for the management of a number of clinical conditions, including infections, inflammatory diseases, musculoskeletal injuries, and thrombotic and ischemic disorders. As an anticancer agent, however, bromelain has been the subject of limited preclinical and clinical observations. In this chapter, history, pharmacological features, potential and actual applications, and safety profile of bromelain are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar, N. M., Naseer, R., Farooqi, A. Z., Aziz, W., & Nazir, M. (2004). Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee—A double-blind prospective randomized study. Clinical Rheumatology, 23, 410–415.

    PubMed  Google Scholar 

  • Ako, H., Cheung, A. H., & Matsuura, P. K. (1981). Isolation of a fibrinolysis enzyme activator from commercial bromelain. Archives Internationales de Pharmacodynamie et de Thérapie, 254, 157–167.

    CAS  PubMed  Google Scholar 

  • Amid, A., Ismail, N. A., Yusof, F., & Salleh, H. M. (2011). Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus. Process Biochemistry, 46, 2232–2239.

    CAS  Google Scholar 

  • Asenjo, C. F. (1946). Vicente Marcano (1848-1891) a pioneer chemist of Venezuela. Journal of Chemical Education, 23, 145.

    CAS  Google Scholar 

  • Baez, R., Lopes, M. T., Salas, C. E., & Hernandez, M. (2007). In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Medica, 73, 1377–1383.

    CAS  PubMed  Google Scholar 

  • Bala, M., Ismail, N. A., Mel, M., Jami, M. S., Salleh, H. H., & Amid, A. (2012). Bromelain production: Current trends and perspective. Archives des Sciences, 65, 1661–16464.

    Google Scholar 

  • Balakrishnan, V., Hareendran, A., & Nair, C. S. (1981). Double-blind cross-over trial of an enzyme preparation in pancreatic steatorrhoea. Journal of the Association of Physicians of India, 29, 207–209.

    CAS  PubMed  Google Scholar 

  • Barth, H., Guseo, A., & Klein, R. (2005). In vitro study on the immunological effect of bromelain and trypsin on mononuclear cells from humans. European Journal of Medical Research, 10, 325–331.

    CAS  PubMed  Google Scholar 

  • Bartholomew, D. P., Paull, R. E., & Rohrbach, K. G. (2002). The pineapple: Botany, production, and uses. Wallingford, England: CABI.

    Google Scholar 

  • Batkin, S., Taussig, S., & Szekerczes, J. (1988a). Modulation of pulmonary metastasis (Lewis lung carcinoma) by bromelain, an extract of the pineapple stem (Ananas comosus). Cancer Investigation, 6, 241–242.

    CAS  PubMed  Google Scholar 

  • Batkin, S., Taussig, S. J., & Szekerczes, J. (1988b). Antimetastatic effect of bromelain with or without its proteolytic and anticoagulant activity. Journal of Cancer Research and Clinical Oncology, 114, 507–508.

    CAS  PubMed  Google Scholar 

  • Bhui, K., Prasad, S., George, J., & Shukla, Y. (2009). Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Letters, 282, 167–176.

    CAS  PubMed  Google Scholar 

  • Bhui, K., Tyagi, S., Prakash, B., & Shukla, Y. (2010). Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells. Biofactors, 36, 474–482.

    CAS  PubMed  Google Scholar 

  • Bhui, K., Tyagi, S., Srivastava, A. K., Singh, M., Roy, P., Singh, R., et al. (2012). Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis. Molecular Carcinogenesis, 51, 231–243.

    CAS  PubMed  Google Scholar 

  • Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., et al. (2005). Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine (Berlin, Germany), 83, 876–886.

    CAS  Google Scholar 

  • Biggerstaff, J. P., Weidow, B., Dexheimer, J., Warnes, G., Vidosh, J., Patel, S., et al. (2008). Soluble fibrin inhibits lymphocyte adherence and cytotoxicity against tumor cells: Implications for cancer metastasis and immunotherapy. Clinical and Applied Thrombosis/Hemostasis, 14, 193–202.

    CAS  PubMed  Google Scholar 

  • Blonstein, J. L. (1969). Control of swelling in boxing injuries. Practitioner, 203, 206.

    CAS  PubMed  Google Scholar 

  • Boik, J. (2001). Natural compounds in cancer therapy. Princeton, MN: Oregon Medical Press.

    Google Scholar 

  • Bradbrook, I. D., Morrison, P. J., & Rogers, H. J. (1978). The effect of bromelain on the absorption of orally administered tetracycline. British Journal of Clinical Pharmacology, 6, 552–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, J. M., Schneider, B., & Beuth, H. J. (2005). Therapeutic use, efficiency and safety of the proteolytic pineapple enzyme Bromelain-POS in children with acute sinusitis in Germany. In Vivo, 19, 417–421.

    CAS  PubMed  Google Scholar 

  • Brocklehurst, K., Crook, E. M., & Kierstan, M. (1972). The mutability of stem bromelain: Evidence for perturbation by structural transitions of the parameters that characterize the reaction of the essential thiol group of bromelain with 2,2′-dipyridyl disulphide. Biochemical Journal, 128, 979–982.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buford, T. W., Cooke, M. B., Redd, L. L., Hudson, G. M., Shelmadine, B. D., & Willoughby, D. S. (2009). Protease supplementation improves muscle function after eccentric exercise. Medicine and Science in Sports and Exercise, 41, 1908–1914.

    CAS  PubMed  Google Scholar 

  • Castell, J. V., Friedrich, G., Kuhn, C. S., & Poppe, G. E. (1997). Intestinal absorption of undegraded proteins in men: Presence of bromelain in plasma after oral intake. American Journal of Physiology, 273, G139–G146.

    CAS  PubMed  Google Scholar 

  • Chandler, D. S., & Mynott, T. L. (1998). Bromelain protects piglets from diarrhoea caused by oral challenge with K88 positive enterotoxigenic Escherichia coli. Gut, 43, 196–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chittenden, R. H. (1891). On the ferments contained in the juice of the pineapple (Ammos sativa), together with some observations on the composition and proteolytic action of the juice. Transactions of the Connecticut Academy of Arts and Sciences, 8, 281–308.

    Google Scholar 

  • Chittenden, R. H. (1893). On the proteolytic action of bromelin, the ferment of pineapple juice. Journal of Physiology, 15, 249–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chobotova, K., Vernallis, A. B., & Majid, F. A. (2010). Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Letters, 290, 148–156.

    CAS  PubMed  Google Scholar 

  • Cohen, A., & Goldman, J. (1964). Bromelains therapy in rheumatoid arthritis. Pennsylvania Medical Journal, 67, 27–30.

    CAS  Google Scholar 

  • De-Giuli Morghen, C., & Pirotta, F. (1978). Bromelain: Interaction with some protease inhibitors and rabbit specific antiserum. Drugs Under Experimental and Clinical Research, 4, 21–23.

    CAS  Google Scholar 

  • Desser, L., Holomanova, D., Zavadova, E., Pavelka, K., Mohr, T., & Herbacek, I. (2001). Oral therapy with proteolytic enzymes decreases excessive TGF-beta levels in human blood. Cancer Chemotherapy and Pharmacology, 47(Suppl), S10–S15.

    CAS  PubMed  Google Scholar 

  • Desser, L., Rehberger, A., & Paukovits, W. (1994). Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vitro. Cancer Biotherapy, 9, 253–263.

    CAS  PubMed  Google Scholar 

  • Dhandayuthapani, S., Perez, H. D., Paroulek, A., Chinnakkannu, P., Kandalam, U., Jaffe, M., et al. (2012). Bromelain-induced apoptosis in GI-101A breast cancer cells. Journal of Medicinal Food, 15, 344–349.

    CAS  PubMed  Google Scholar 

  • Eckert, K., Grabowska, E., Stange, R., Schneider, U., Eschmann, K., & Maurer, H. R. (1999). Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncology Reports, 6, 1191–1199.

    CAS  PubMed  Google Scholar 

  • Engwerda, C. R., Andrew, D., Ladhams, A., & Mynott, T. L. (2001a). Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cellular Immunology, 210, 66–75.

    CAS  PubMed  Google Scholar 

  • Engwerda, C. R., Andrew, D., Murphy, M., & Mynott, T. L. (2001b). Bromelain activates murine macrophages and natural killer cells in vitro. Cellular Immunology, 210, 5–10.

    CAS  PubMed  Google Scholar 

  • European Medicines Agency. (2012). European Public Assessment Report (EPAR) for NexoBrid [Online]. European Medicines Agency. Retrieved April 9, 2015, from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/002246/WC500136583.pdf

  • Fitzhugh, D. J., Shan, S., Dewhirst, M. W., & Hale, L. P. (2008). Bromelain treatment decreases neutrophil migration to sites of inflammation. Clinical Immunology, 128, 66–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fouz, N., Amid, A., & Hashim, Y. Z. (2014a). Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain. Asian Pacific Journal of Cancer Prevention, 14, 6709–6714.

    PubMed  Google Scholar 

  • Fouz, N., Amid, A., & Hashim, Y. Z. (2014b). Gene expression analysis in mcf-7 breast cancer cells treated with recombinant bromelain. Applied Biochemistry and Biotechnology, 173, 1618–1639.

    CAS  PubMed  Google Scholar 

  • Gailhofer, G., Wilders-Truschnig, M., Smolle, J., & Ludvan, M. (1988). Asthma caused by bromelain: An occupational allergy. Clinical Allergy, 18, 445–450.

    CAS  PubMed  Google Scholar 

  • Garbin, F., Harrach, T., Eckert, K., & Maurer, H. (1994). Bromelain proteinase-f9 augments human lymphocyte-mediated growth-inhibition of various tumor-cells in-vitro. International Journal of Oncology, 5, 197–203.

    CAS  PubMed  Google Scholar 

  • Gaspani, L., Limiroli, E., Ferrario, P., & Bianchi, M. (2002). In vivo and in vitro effects of bromelain on PGE(2) and SP concentrations in the inflammatory exudate in rats. Pharmacology, 65, 83–86.

    CAS  PubMed  Google Scholar 

  • Gerard, G. (1972). Anticancer treatment and bromelains. Agressologie, 13, 261–274.

    CAS  PubMed  Google Scholar 

  • Glade, M. J., Kendra, D., & Kaminski, M. V., Jr. (2001). Improvement in protein utilization in nursing-home patients on tube feeding supplemented with an enzyme product derived from Aspergillus niger and bromelain. Nutrition, 17, 348–350.

    CAS  PubMed  Google Scholar 

  • Glaser, D., & Hilberg, T. (2006). The influence of bromelain on platelet count and platelet activity in vitro. Platelets, 17, 37–41.

    PubMed  Google Scholar 

  • Goldstein, N., Taussig, S. J., Gallup, J. D., & Koto, V. (1975). Bromelain as a skin cancer preventive in hairless mice. Hawaii Medical Journal, 34, 91–94.

    CAS  PubMed  Google Scholar 

  • Grabowska, E., Eckert, K., Fichtner, I., Schulzeforster, K., & Maurer, H. (1997). Bromelain proteases suppress growth, invasion and lung metastasis of B16F10 mouse melanoma cells. International Journal of Oncology, 11, 243–248.

    CAS  PubMed  Google Scholar 

  • Guimaraes-Ferreira, C. A., Rodrigues, E. G., Mortara, R. A., Cabral, H., Serrano, F. A., Ribeiro-Dos-Santos, R., et al. (2007). Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia, 9, 723–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutfreund, A. E., Taussig, S. J., & Morris, A. K. (1978). Effect of oral bromelain on blood pressure and heart rate of hypertensive patients. Hawaii Medical Journal, 37, 143–146.

    CAS  PubMed  Google Scholar 

  • Hager, E. D., Sube, B., Strama, H., & Schrittwieser, G. (1996). Multimodal treatment of patients with advanced pancreatic cancer in combination with locoregional hyperthermia. Southern Medical Journal, 89, 145.

    Google Scholar 

  • Hale, L. P., Fitzhugh, D. J., & Staats, H. F. (2006). Oral immunogenicity of the plant proteinase bromelain. International Immunopharmacology, 6, 2038–2046.

    CAS  PubMed  Google Scholar 

  • Hale, L. P., Greer, P. K., & Sempowski, G. D. (2002). Bromelain treatment alters leukocyte expression of cell surface molecules involved in cellular adhesion and activation. Clinical Immunology, 104, 183–190.

    CAS  PubMed  Google Scholar 

  • Hale, L. P., Greer, P. K., Trinh, C. T., & Gottfried, M. R. (2005a). Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clinical Immunology, 116, 135–142.

    CAS  PubMed  Google Scholar 

  • Hale, L. P., Greer, P. K., Trinh, C. T., & James, C. L. (2005b). Proteinase activity and stability of natural bromelain preparations. International Immunopharmacology, 5, 783–793.

    CAS  PubMed  Google Scholar 

  • Hale, L. P., & Haynes, B. F. (1992). Bromelain treatment of human T cells removes CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules and markedly enhances CD2-mediated T cell activation. Journal of Immunology, 149, 3809–3816.

    CAS  Google Scholar 

  • Harrach, T., Eckert, K., Schulze-Forster, K., Nuck, R., Grunow, D., & Maurer, H. R. (1995). Isolation and partial characterization of basic proteinases from stem bromelain. Journal of Protein Chemistry, 14, 41–52.

    CAS  PubMed  Google Scholar 

  • Harrach, T., Gebauer, F., Eckert, K., Kunze, R., & Maurer, H. (1994). Bromelain proteinases modulate the cd44 expression on human molt-4/8 leukemia and sk-mel-28 melanoma-cells in-vitro. International Journal of Oncology, 5, 485–488.

    CAS  PubMed  Google Scholar 

  • Heinicke, R. M., & Gortner, W. A. (1957). Stem bromelain—A new protease preparation from pineapple plants. Economic Botany, 11, 225–234.

    CAS  Google Scholar 

  • Heinicke, R. M., van der Wal, L., & Yokoyama, M. (1972). Effect of bromelain (Ananase) on human platelet aggregation. Experientia, 28, 844–845.

    CAS  PubMed  Google Scholar 

  • Hou, R. C., Chen, Y. S., Huang, J. R., & Jeng, K. C. (2006). Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats. Journal of Agricultural and Food Chemistry, 54, 2193–2198.

    CAS  PubMed  Google Scholar 

  • Houck, J. C., Chang, C. M., & Klein, G. (1983). Isolation of an effective debriding agent from the stems of pineapple plants. International Journal of Tissue Reactions, 5, 125–134.

    CAS  PubMed  Google Scholar 

  • Howat, R. C., & Lewis, G. D. (1972). The effect of bromelain therapy on episiotomy wounds—A double blind controlled clinical trial. The Journal of Obstetrics and Gynaecology of the British Commonwealth, 79, 951–953.

    CAS  PubMed  Google Scholar 

  • Huang, J. R., Wu, C. C., Hou, R. C., & Jeng, K. C. (2008). Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14. Immunological Investigations, 37, 263–277.

    CAS  PubMed  Google Scholar 

  • Inagami, T., & Murachi, T. (1963). Kinetic studies of bromelain catalysis. Biochemistry, 2, 1439–1444.

    CAS  PubMed  Google Scholar 

  • Juhasz, B., Thirunavukkarasu, M., Pant, R., Zhan, L., Penumathsa, S. V., Secor, E. R., Jr., et al. (2008). Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 294, H1365–H1370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra, N., Bhui, K., Roy, P., Srivastava, S., George, J., Prasad, S., et al. (2008). Regulation of p53, nuclear factor kappaB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin. Toxicology and Applied Pharmacology, 226, 30–37.

    CAS  PubMed  Google Scholar 

  • Kane, S., & Goldberg, M. J. (2000). Use of bromelain for mild ulcerative colitis. Annals of Internal Medicine, 132, 680.

    CAS  PubMed  Google Scholar 

  • Kelly, G. S. (1996). Bromelain: A literature review and discussion of its therapeutic applications. Alternative Medicine Review, 1, 243–257.

    Google Scholar 

  • Kleef, R., Delohery, T. M., & Bovbjerg, D. H. (1996). Selective modulation of cell adhesion molecules on lymphocytes by bromelain protease 5. Pathobiology, 64, 339–346.

    CAS  PubMed  Google Scholar 

  • Klein, G., Kullich, W., Schnitker, J., & Schwann, H. (2006). Efficacy and tolerance of an oral enzyme combination in painful osteoarthritis of the hip. A double-blind, randomised study comparing oral enzymes with non-steroidal anti-inflammatory drugs. Clinical and Experimental Rheumatology, 24, 25–30.

    CAS  PubMed  Google Scholar 

  • Kumakura, S., Yamashita, M., & Tsurufuji, S. (1988). Effect of bromelain on kaolin-induced inflammation in rats. European Journal of Pharmacology, 150, 295–301.

    CAS  PubMed  Google Scholar 

  • Lipinski, B., & Egyud, L. G. (2000). Resistance of cancer cells to immune recognition and killing. Medical Hypotheses, 54, 456–460.

    CAS  PubMed  Google Scholar 

  • Livio, M., de Gaetano, G., & Donati, M. B. (1978). Effect of bromelain on fibrinogen level, prothrombin complex factors and platelet aggregation in rat: A preliminary report. Drugs Under Experimental and Clinical Research, 1, 49–53.

    Google Scholar 

  • Luerti, M., & Vignali, M. (1978). Influence of bromelain on penetration of antibiotics in uterus, salpinx and ovary. Drugs Under Experimental and Clinical Research, 4, 45–48.

    Google Scholar 

  • Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.

    CAS  PubMed  Google Scholar 

  • Massimiliano, R., Pietro, R., Paolo, S., Sara, P., & Michele, F. (2007). Role of bromelain in the treatment of patients with pityriasis lichenoides chronica. The Journal of Dermatological Treatment, 18, 219–222.

    CAS  PubMed  Google Scholar 

  • Masson, M. (1995). Bromelain in blunt injuries of the locomotor system. A study of observed applications in general practice. Fortschritte der Medizin, 113, 303–306.

    CAS  PubMed  Google Scholar 

  • Maurer, H. R. (2001). Bromelain: Biochemistry, pharmacology and medical use. Cellular and Molecular Life Sciences, 58, 1234–1245.

    CAS  PubMed  Google Scholar 

  • Maurer, H. R., Hozumi, M., Honma, Y., & Okabe-Kado, J. (1988). Bromelain induces the differentiation of leukemic cells in vitro: An explanation for its cytostatic effects? Planta Medica, 54, 377–381.

    CAS  PubMed  Google Scholar 

  • Mcnicol, A., & Israels, S. J. (2008). Beyond hemostasis: The role of platelets in inflammation, malignancy and infection. Cardiovascular & Hematological Disorders Drug Targets, 8, 99–117.

    CAS  Google Scholar 

  • Metzig, C., Grabowska, E., Eckert, K., Rehse, K., & Maurer, H. R. (1999). Bromelain proteases reduce human platelet aggregation in vitro, adhesion to bovine endothelial cells and thrombus formation in rat vessels in vivo. In Vivo, 13, 7–12.

    CAS  PubMed  Google Scholar 

  • Miller, P. C., Bailey, S. P., Barnes, M. E., Derr, S. J., & Hall, E. E. (2004). The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. Journal of Sports Sciences, 22, 365–372.

    PubMed  Google Scholar 

  • Mori, S., Ojima, Y., Hirose, T., Sasaki, T., & Hashimoto, Y. (1972). The clinical effect of proteolytic enzyme containing bromelain and trypsin on urinary tract infection evaluated by double blind method. Acta Obstetrica et Gynaecologica Japonica, 19, 147–153.

    CAS  PubMed  Google Scholar 

  • Morita, A. H., Uchida, D. A., Taussig, S. J., Chou, S. C., & Hokama, Y. (1979). Chromatographic fractionation and characterization of the active platelet aggregation inhibitory factor from bromelain. Archives Internationales de Pharmacodynamie et de Thérapie, 239, 340–350.

    CAS  PubMed  Google Scholar 

  • Moss, J. N., Frazier, C. V., & Martin, G. J. (1963). Bromelains. The pharmacology of the enzymes. Archives Internationales de Pharmacodynamie et de Thérapie, 145, 166–189.

    CAS  PubMed  Google Scholar 

  • Munzig, E., Eckert, K., Harrach, T., Graf, H., & Maurer, H. R. (1994). Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endothelial cells. FEBS Letters, 351, 215–218.

    CAS  PubMed  Google Scholar 

  • Mynott, T. L., Guandalini, S., Raimondi, F., & Fasano, A. (1997). Bromelain prevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterology, 113, 175–184.

    CAS  PubMed  Google Scholar 

  • Mynott, T. L., Ladhams, A., Scarmato, P., & Engwerda, C. R. (1999). Bromelain, from pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in T cells. Journal of Immunology, 163, 2568–2575.

    CAS  Google Scholar 

  • Mynott, T. L., Luke, R. K., & Chandler, D. S. (1996). Oral administration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine. Gut, 38, 28–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • N/A. (1891). Bromelin. Bulletin of Pharmacy. George S. Davis Medical Publisher.

    Google Scholar 

  • Neumayer, C., Fugl, A., Nanobashvili, J., Blumer, R., Punz, A., Gruber, H., et al. (2006). Combined enzymatic and antioxidative treatment reduces ischemia-reperfusion injury in rabbit skeletal muscle. Journal of Surgical Research, 133, 150–158.

    CAS  PubMed  Google Scholar 

  • Nieper, H. A. (1974). A program for the treatment of cancer. Krebs, 6, 124–127.

    Google Scholar 

  • Nieper, H. A. (1976). Bromelain in der Kontrolle malignen Wachstums. Krebsgeschehen, 1, 9–15.

    Google Scholar 

  • [No Authors Listed]. (2010). Bromelain monograph. Alternative Medicine Review, 15, 361–368.

    Google Scholar 

  • Oh-Ishi, S., Uchida, Y., Ueno, A., & Katori, M. (1979). Bromelian, a thiolprotease from pineapple stem, depletes high molecular weight kininogen by activation of Hageman factor (Factor XIII). Thrombosis Research, 14, 665–672.

    CAS  PubMed  Google Scholar 

  • Oishi, N., Batkin, S., Taussig, S., Vaught, L., & Szekerczes, J. (1985a). Enhancement of cell cycle perturbation with bromelain. In The Coulter Electronic Flow Cytometry Meeting.

    Google Scholar 

  • Oishi, N., Batkin, S., Taussig, S., Vaught, L., & Szekerczes, J. (1985b, December). Enhancement of cell cycle perturbation with bromelain. In Proceedings of the Coulter Electronic Flow Cytometry Meeting.

    Google Scholar 

  • Onken, J. E., Greer, P. K., Calingaert, B., & Hale, L. P. (2008). Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clinical Immunology, 126, 345–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paroulek, A. F., Jaffe, M., & Rathinavelu, A. (2009). The effects of the herbal enzyme bromelain against breast cancer cell line GI101A. The FASEB Journal, 23, LB18.

    Google Scholar 

  • Pellicano, R., Strona, S., Simondi, D., Reggiani, S., Pallavicino, F., Sguazzini, C., et al. (2009). Benefit of dietary integrators for treating functional dyspepsia: A prospective pilot study. Minerva Gastroenterologica e Dietologica, 55, 227–235.

    CAS  PubMed  Google Scholar 

  • Pillai, K., Akhter, J., Chua, T. C., & Morris, D. L. (2014a). A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. International Journal of Cancer, 134, 478–486.

    Google Scholar 

  • Pillai, K., Ehteda, A., Akhter, J., Chua, T. C., & Morris, D. L. (2014b). Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells. Anti-Cancer Drugs, 25, 150–160.

    CAS  PubMed  Google Scholar 

  • Renzini, G., & Varengo, M. (1972). Absorption of tetracycline in presence of bromelain after oral administration. Arzneimittel-Forschung, 22, 410–412.

    CAS  PubMed  Google Scholar 

  • Romano, B., Fasolino, I., Pagano, E., Capasso, R., Pace, S., de Rosa, G., et al. (2014). The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Molecular Nutrition & Food Research, 58, 457–465.

    CAS  Google Scholar 

  • Rosenberg, L., Krieger, Y., Bogdanov-Berezovski, A., Silberstein, E., Shoham, Y., & Singer, A. J. (2014). A novel rapid and selective enzymatic debridement agent for burn wound management: A multi-center RCT. Burns, 40, 466–474.

    PubMed  Google Scholar 

  • Rosenberg, L., Krieger, Y., Silberstein, E., Arnon, O., Sinelnikov, I. A., Bogdanov-Berezovsky, A., et al. (2012). Selectivity of a bromelain based enzymatic debridement agent: A porcine study. Burns, 38(7), 1035–1040.

    PubMed  Google Scholar 

  • Rosenberg, L., Lapid, O., Bogdanov-Berezovsky, A., Glesinger, R., Krieger, Y., Silberstein, E., et al. (2004). Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: A preliminary report. Burns, 30, 843–850.

    PubMed  Google Scholar 

  • Rovenska, E., Svik, K., Stancikova, M., & Rovensky, J. (1999). Enzyme and combination therapy with cyclosporin A in the rat developing adjuvant arthritis. International Journal of Tissue Reactions, 21, 105–111.

    CAS  PubMed  Google Scholar 

  • Rowan, A. D., & Buttle, D. J. (1993). Pineapple cysteine endopeptidases. Methods in Enzymology, 244, 555–568.

    Google Scholar 

  • Rowan, A. D., Christopher, C. W., Kelley, S. F., Buttle, D. J., & Ehrlich, H. P. (1990). Debridement of experimental full-thickness skin burns of rats with enzyme fractions derived from pineapple stem. Burns, 16, 243–246.

    CAS  PubMed  Google Scholar 

  • Ryan, R. E. (1967). A double-blind clinical evaluation of bromelains in the treatment of acute sinusitis. Headache, 7, 13–17.

    CAS  PubMed  Google Scholar 

  • Secor, E. R., Jr., Singh, A., Guernsey, L. A., Mcnamara, J. T., Zhan, L., Maulik, N., et al. (2009). Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro. International Immunopharmacology, 9, 340–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert, J., Ganser, R., & Brendel, W. (1979). Absorption of a proteolytic enzyme originating from plants out of the gastro-intestinal tract into blood and lymph of rats (author’s transl). Zeitschrift für Gastroenterologie, 17, 1–8.

    CAS  PubMed  Google Scholar 

  • Seligman, B. (1969). Oral bromelains as adjuncts in the treatment of acute thrombophlebitis. Angiology, 20, 22–26.

    CAS  PubMed  Google Scholar 

  • Seltzer, A. P. (1962). Minimizing post-operative edema and ecchymoses by the use of an oral enzyme preparation (bromelain). A controlled study of 53 rhinoplasty cases. Eye, Ear, Nose & Throat Monthly, 41, 813–817.

    CAS  Google Scholar 

  • Seltzer, A. P. (1964). A double blind study of bromelain in the treatment of edema and ecchymoses following surgical and non-surgical trauma to the face. Eye, Ear, Nose & Throat Monthly, 43, 54–57.

    CAS  Google Scholar 

  • Shahid, S. K., Turakhia, N. H., Kundra, M., Shanbag, P., Daftary, G. V., & Schiess, W. (2002). Efficacy and safety of phlogenzym—A protease formulation, in sepsis in children. Journal of the Association of Physicians of India, 50, 527–531.

    CAS  PubMed  Google Scholar 

  • Shiew, P. S., Fang, Y. L., & Majid, F. A. A. (2010). In vitro study of bromelain activity in artificial stomach juice and blood. In Proceedings of the 3rd International Conference on Biotechnology for the Wellness Industry, PWTC.

    Google Scholar 

  • Shoskes, D. A., Zeitlin, S. I., Shahed, A., & Rajfer, J. (1999). Quercetin in men with category III chronic prostatitis: A preliminary prospective, double-blind, placebo-controlled trial. Urology, 54, 960–963.

    CAS  PubMed  Google Scholar 

  • Singer, A. J., McClain, S. A., Taira, B. R., Rooney, J., Steinhauff, N., & Rosenberg, L. (2010a). Rapid and selective enzymatic debridement of porcine comb burns with bromelain-derived Debrase: Acute-phase preservation of noninjured tissue and zone of stasis. Journal of Burn Care & Research, 31, 304–309.

    Google Scholar 

  • Singer, A. J., Taira, B. R., Anderson, R., McClain, S. A., & Rosenberg, L. (2010b). The effects of rapid enzymatic debridement of deep partial-thickness burns with Debrase on wound reepithelialization in swine. Journal of Burn Care & Research, 31, 795–802.

    Google Scholar 

  • Smyth, R. D., Brennan, R., & Martin, G. J. (1962). Systemic biochemical changes following the oral administration of a proteolytic enzyme, bromelain. Archives Internationales de Pharmacodynamie et de Thérapie, 136, 230–236.

    CAS  PubMed  Google Scholar 

  • Stepek, G., Buttle, D. J., Duce, I. R., Lowe, A., & Behnke, J. M. (2005). Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology, 130, 203–211.

    CAS  PubMed  Google Scholar 

  • Stepek, G., Lowe, A. E., Buttle, D. J., Duce, I. R., & Behnke, J. M. (2006). In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology, 132, 681–689.

    CAS  PubMed  Google Scholar 

  • Stopper, H., Schinzel, R., Sebekova, K., & Heidland, A. (2003). Genotoxicity of advanced glycation end products in mammalian cells. Cancer Letters, 190, 151–156.

    CAS  PubMed  Google Scholar 

  • Streichhan, P., van Schaik, W., & Stauder, G. (1995). Bioavailability of therapeutically used hydrolytic enzymes (Absorption of orally administered enzymes). Berlin, Germany: Springer.

    Google Scholar 

  • Tassman, G. C., Zafran, J. N., & Zayon, G. M. (1965). A double-blind crossover study of a plant proteolytic enzyme in oral surgery. The Journal of Dental Medicine, 20, 51–54.

    CAS  PubMed  Google Scholar 

  • Taub, S. J. (1966). The use of Ananase in sinusitis. A study of 60 patients. Eye, Ear, Nose & Throat Monthly, 45, 96 passim.

    Google Scholar 

  • Taussig, S. J., & Batkin, S. (1988). Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. Journal of Ethnopharmacology, 22, 191–203.

    CAS  PubMed  Google Scholar 

  • Taussig, S. J., & Goldstein, N. (1976). Effect of bromelain on cancer. Krebsgeschehen, 8, 81–87.

    Google Scholar 

  • Taussig, S. J., Szekerczes, J., & Batkin, S. (1985). Inhibition of tumour growth in vitro by bromelain, an extract of the pineapple plant (Ananas comosus). Planta Medica, 51, 538–539.

    CAS  PubMed  Google Scholar 

  • Thornhill, S. M., & Kelly, A. M. (2000). Natural treatment of perennial allergic rhinitis. Alternative Medicine Review, 5, 448–454.

    CAS  PubMed  Google Scholar 

  • Tinozzi, S., & Vengoni, A. (1978). Effect of bromelain on serum and tissue levels of amoxycillin. Drugs Under Experimental and Clinical Research, 4, 39–44.

    Google Scholar 

  • Tysnes, B. B., Maurer, H. R., Porwol, T., Probst, B., Bjerkvig, R., & Hoover, F. (2001). Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia, 3, 469–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vellini, M., Desideri, D., Milanese, A., Omini, C., Daffonchio, L., Hernandez, A., et al. (1986). Possible involvement of eicosanoids in the pharmacological action of bromelain. Arzneimittel-Forschung, 36, 110–112.

    CAS  PubMed  Google Scholar 

  • Walker, A. F., Bundy, R., Hicks, S. M., & Middleton, R. W. (2002). Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine, 9, 681–686.

    CAS  PubMed  Google Scholar 

  • Wang, S. L., Lin, H. T., Liang, T. W., Chen, Y. J., Yen, Y. H., & Guo, S. P. (2008). Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresource Technology, 99, 4386–4393.

    CAS  PubMed  Google Scholar 

  • Wen, S., Huang, T. H., Li, G. Q., Yamahara, J., Roufogalis, B. D., & Li, Y. (2006). Bromelain improves decrease in defecation in postoperative rats: Modulation of colonic gene expression of inducible nitric oxide synthase. Life Sciences, 78, 995–1002.

    CAS  PubMed  Google Scholar 

  • Yoshioka, S., Izutsu, K., Aso, Y., & Takeda, Y. (1991). Inactivation kinetics of enzyme pharmaceuticals in aqueous solution. Pharmaceutical Research, 8, 480–484.

    CAS  PubMed  Google Scholar 

  • Zatuchni, G. I., & Colombi, D. J. (1967). Bromelains therapy for the prevention of episiotomy pain. Obstetrics and Gynecology, 29, 275–278.

    CAS  PubMed  Google Scholar 

  • Zavadova, E., Desser, L., & Mohr, T. (1995). Stimulation of reactive oxygen species production and cytotoxicity in human neutrophils in vitro and after oral administration of a polyenzyme preparation. Cancer Biotherapy, 10, 147–152.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amini, A., Masoumi-Moghaddam, S., Morris, D.L. (2016). Bromelain. In: Utility of Bromelain and N-Acetylcysteine in Treatment of Peritoneal Dissemination of Gastrointestinal Mucin-Producing Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-28570-2_3

Download citation

Publish with us

Policies and ethics