Skip to main content

Cancer-Induced Inflammation

  • Chapter
  • First Online:
Book cover Oncodynamics: Effects of Cancer Cells on the Body

Abstract

The relationship between inflammation and cancer has long been discussed, ever since Virchow first postulated the role of chronic inflammation in the onset of cancer. Though much research since then has focused on inflammation-induced cancer, it is of equal importance to consider the impact tumour cells can have on the immune system. Stemming from the broader concept of “oncodynamics”, this chapter will discuss cancer-induced inflammation and immunosuppression caused by the release of tumour-derived factors that act on the body’s immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARG1:

Arginase 1

CSF1:

Colony stimulating factor 1

CTL:

Cytotoxic T lymphocyte (CD8+ T-cell)

DC:

Dendritic cell

FOXP3:

Forkhead box P3

IFN:

Interferon

IL:

Interleukin

iMC:

Immature myeloid cell

iNOS:

Inducible nitric oxide synthase

JAK:

Janus kinase

LPS:

Lipopolysaccharide

M-CSF:

Macrophage colony-stimulating factor

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

MSC:

Myeloid suppressor cell

NF-κB:

Nuclear factor kappa B

NK:

Natural killer

NO:

Nitric oxide

NOS2:

Inducible nitric oxide synthase

ROS:

Reactive oxygen species

STAT:

Signal transducer and activator of transcription

TAM:

Tumour-associated macrophage

TAN:

Tumour-associated neutrophil

TCR:

T cell receptor

TGF-β:

Transforming growth factor beta

TLR:

Toll-like receptor

TME:

Tumour microenvironment

TNF:

Tumour necrosis factor

Treg :

Regulatory T cell

VEGF:

Vascular endothelial growth factor

References

  1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  CAS  PubMed  Google Scholar 

  2. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.

    Article  CAS  PubMed  Google Scholar 

  3. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.

    Article  CAS  PubMed  Google Scholar 

  4. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Google Scholar 

  5. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gamero AM, Young HA, Wiltrout RH. Inactivation of STAT3 in tumor cells: releasing a brake on immune responses against cancer? Cancer Cell. 2004:111–2.

    Google Scholar 

  7. Groner B, Lucks P, Borghouts C. The function of STAT3 in tumor cells and their microenvironment. Semin Cell Dev Biol. 2008;19:341–50.

    Article  CAS  PubMed  Google Scholar 

  8. Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4(3):176–85.

    Article  CAS  PubMed  Google Scholar 

  9. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev. 2009;9:798–809.

    Article  CAS  Google Scholar 

  10. Li N, Grivennikov SI, Karin M. The unholy trinity: inflammation, cytokines, and STAT3 shape the cancer microenvironment. Cancer Cell. 2011;19:429–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.

    Article  CAS  PubMed  Google Scholar 

  12. Lee H. Kumar Pal S, Reckamp K, Figlin RA, Yu H. STAT3: a target to enhance antitumor immune response. Curr Top Microbiol Immunol. 2011;344:41–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Kortylewski M, Yu H. Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol. 2008;20(2):228–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008;43:374–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008;265:204–15.

    Article  Google Scholar 

  16. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22:33–40.

    Article  CAS  PubMed  Google Scholar 

  17. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  18. Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, et al. Cellular and molecular pathways linking inflammation and cancer. Immunobiology. 2009;214:761–77.

    Article  CAS  PubMed  Google Scholar 

  19. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4:941–52.

    Article  CAS  PubMed  Google Scholar 

  20. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Qian B, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  Google Scholar 

  22. Kinjyo I, Inoue H, Hamano S, Fukuyama S, Yoshimura T, Koga K, et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-β1. J Exp Med. 2006;203:1021–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+ CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108:1571–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mantovani A. The growing diversity and spectrum of action of myeloid-derived suppressor cells. Eur J Immunol. 2010;40:3317–20.

    Article  CAS  PubMed  Google Scholar 

  25. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008;181:4666–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chow MT, Moller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22:23–32.

    Article  CAS  PubMed  Google Scholar 

  28. Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 2008;18:3–10.

    Article  CAS  PubMed  Google Scholar 

  29. Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 2002;51:293–8.

    Article  CAS  PubMed  Google Scholar 

  30. Zeng Z, Xu X, Zhang Y, Xing J, Long J, Gu L, et al. Tumor-derived factors impaired motility and immune functions of dendritic cells through derangement of biophysical characteristics and reorganization of cytoskeleton. Cell Motil Cytoskelet. 2007;64:186–98.

    Article  CAS  Google Scholar 

  31. Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis. 2015;36(10):1–9.

    Article  Google Scholar 

  32. Qian B, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  Google Scholar 

  33. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24(6):301–5.

    Article  Google Scholar 

  34. Rodriguez PC, Ochoa AC. T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Semin Cancer Biol. 2006;16:66–72.

    Article  CAS  PubMed  Google Scholar 

  35. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 2004;53:64–72.

    Article  CAS  PubMed  Google Scholar 

  36. Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, et al. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2008;212:795–812.

    Article  Google Scholar 

  37. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66:1–9.

    Article  PubMed  Google Scholar 

  38. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006;16:3–15.

    Article  CAS  PubMed  Google Scholar 

  39. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Balkwill F, Montfort A, Capasso M. B regulatory cells in cancer. Trends Immunol. 2013;34(4):169–73.

    Article  CAS  PubMed  Google Scholar 

  41. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22.

    Article  CAS  PubMed  Google Scholar 

  42. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  CAS  PubMed  Google Scholar 

  43. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33(3):119–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    Article  CAS  PubMed  Google Scholar 

  45. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  CAS  PubMed  Google Scholar 

  46. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18:349–55.

    Google Scholar 

  47. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6.

    Article  CAS  PubMed  Google Scholar 

  48. McGarry Houghton A. The paradox of tumour-associated neutrophils. Cell Cycle. 2010;9(9):1732–7.

    Google Scholar 

  49. Piccard H, Muschel RJ, Opdenakker G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol. 2012;82:296–309.

    Article  CAS  PubMed  Google Scholar 

  50. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 2012;33(5):949–55.

    Article  CAS  PubMed  Google Scholar 

  51. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mantovani A. The yin-yang of tumor-associated neutrophils. Cancer Cell. 2009;16:173–4.

    Article  CAS  PubMed  Google Scholar 

  53. Tripathi P, Aggarwal A. NF-κB transcription factor: a key player in the generation of immune response. Curr Sci. 2006;90(4):519–31.

    CAS  Google Scholar 

  54. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 2006;97(6):439–47.

    Article  CAS  PubMed  Google Scholar 

  55. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44:2850–9.

    Article  CAS  PubMed  Google Scholar 

  56. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquination: the control of NF-κB activity. Annu Rev Immunol. 2000;18:621–63.

    Article  CAS  PubMed  Google Scholar 

  57. Li Q, Verma IM. NF-κB regulation in the immune system. Nature Rev Immunol. 2002;2:725–34.

    Article  CAS  Google Scholar 

  58. Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15(2):425–30.

    Article  CAS  PubMed  Google Scholar 

  59. Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441:431–6.

    Article  CAS  PubMed  Google Scholar 

  60. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immunol. 1994;12:141–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Young, K., Singh, G. (2016). Cancer-Induced Inflammation. In: Singh, G. (eds) Oncodynamics: Effects of Cancer Cells on the Body. Springer, Cham. https://doi.org/10.1007/978-3-319-28558-0_4

Download citation

Publish with us

Policies and ethics