Skip to main content

KNIME for Open-Source Bioimage Analysis: A Tutorial

  • Chapter
  • First Online:
Focus on Bio-Image Informatics

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 219))

Abstract

The open analytics platform KNIME is a modular environment that enables easy visual assembly and interactive execution of workflows. KNIME is already widely used in various areas of research, for instance in cheminformatics or classical data analysis. In this tutorial the KNIME Image Processing Extension is introduced, which adds the capabilities to process and analyse huge amounts of images. In combination with other KNIME extensions, KNIME Image Processing opens up new possibilities for inter-domain analysis of image data in an understandable and reproducible way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://imagej.net.

  2. 2.

    http://scif.io.

  3. 3.

    http://fiji.sc/TrackMate.

  4. 4.

    http://tech.knime.org/community/rdkit.

  5. 5.

    http://www.knime.org.

  6. 6.

    http://knime.imagej.net.

  7. 7.

    The entire Phenotype Classification workflow is available for download at http://knime.imagej.net/aaec.

  8. 8.

    For detailed information see http://www.broadinstitute.org/bbbc/BBBC013/. Please note: The BMP images available on the website are already split into the individual channels.

  9. 9.

    For details and installation instructions see https://tech.knime.org/community/imagej.

  10. 10.

    For details see the example workflows on http://tech.knime.org/supervised-image-segmentation.

  11. 11.

    For details see Phenotype Classification workflow at http://knime.imagej.net/aaec.

  12. 12.

    see http://www.broadinstitute.org/bbbc/BBBC013/ for details on the plate design.

  13. 13.

    See https://www.knime.org/applications.

References

  • Aligeti M, Behrens RT, Pocock GM, Schindelin J, Dietz C, Eliceiri KW, Swanson CM, Malim MH, Ahlquist P, Sherer NM (2014) Cooperativity among rev-associated nuclear export signals regulates HIV-1 gene expression and is a determinant of virus species tropism. J Virol 88(24):14,207–14,221. doi:10.1128/JVI.01897-14. http://jvi.asm.org/content/88/24/14207.full.pdf+html

    Google Scholar 

  • Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, MacDonald D, Moore WJ, Neves C, Patterson A et al (2012) Omero: flexible, model-driven data management for experimental biology. Nat Methods 9(3):245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2008) KNIME: the Konstanz information miner. Springer, Berlin

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath B, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B et al (2012) Biological imaging software tools. Nat Methods 9(7):697–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunkel M, Flottmann B, Heilemann M, Reymann J, Erfle H (2014) Integrated and correlative high-throughput and super-resolution microscopy. Histochem Cell Biol 141(6):597–603. doi:10.1007/s00418-014-1209-y. http://dx.doi.org/10.1007/s00418-014-1209-y

    Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern (6):610–621

    Article  Google Scholar 

  • Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for cellprofiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khotanzad A, Hong YH (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  • Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, MacDonald D et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljosa V, Sokolnicki KL, Carpenter AE (2012) Annotated high-throughput microscopy image sets for validation. Nat Methods 9(7):637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodermeyer V et al (2013) 90k, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 10(1):11

    Article  Google Scholar 

  • Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  • Pietzsch T, Preibisch S, Tomančák P, Saalfeld S (2012) Imglib2 - generic image processing in java. Bioinformatics 28(22):3009–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royer LA et al (2015) ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat Methods 12(6):480–481

    Article  CAS  PubMed  Google Scholar 

  • Saha AK, Kappes F, Mundade A, Deutzmann A, Rosmarin DM, Legendre M, Chatain N, Al-Obaidi Z, Adams BS, Ploegh HL, Ferrando-May E, Mor-Vaknin N, Markovitz DM (2013) Intercellular trafficking of the nuclear oncoprotein dek. Proc Natl Acad Sci 110(17):6847–6852. doi:10.1073/pnas.1220751110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Schölkopf B, Alexander JS (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT, Cambridge

    Google Scholar 

  • Strauch M, Luedke A, Muench D, Laudes T, Galizia CG, Martinelli E, Lavra L, Paolesse R, Ulivieri A, Catini A, Capuano R, Di Natale C (2014) More than apples and oranges: detecting cancer with a fruit fly’s antenna

    Google Scholar 

  • Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dietz, C., Berthold, M.R. (2016). KNIME for Open-Source Bioimage Analysis: A Tutorial. In: De Vos, W., Munck, S., Timmermans, JP. (eds) Focus on Bio-Image Informatics. Advances in Anatomy, Embryology and Cell Biology, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-28549-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28549-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28547-4

  • Online ISBN: 978-3-319-28549-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics