Abstract
The open analytics platform KNIME is a modular environment that enables easy visual assembly and interactive execution of workflows. KNIME is already widely used in various areas of research, for instance in cheminformatics or classical data analysis. In this tutorial the KNIME Image Processing Extension is introduced, which adds the capabilities to process and analyse huge amounts of images. In combination with other KNIME extensions, KNIME Image Processing opens up new possibilities for inter-domain analysis of image data in an understandable and reproducible way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
The entire Phenotype Classification workflow is available for download at http://knime.imagej.net/aaec.
- 8.
For detailed information see http://www.broadinstitute.org/bbbc/BBBC013/. Please note: The BMP images available on the website are already split into the individual channels.
- 9.
For details and installation instructions see https://tech.knime.org/community/imagej.
- 10.
For details see the example workflows on http://tech.knime.org/supervised-image-segmentation.
- 11.
For details see Phenotype Classification workflow at http://knime.imagej.net/aaec.
- 12.
see http://www.broadinstitute.org/bbbc/BBBC013/ for details on the plate design.
- 13.
References
Aligeti M, Behrens RT, Pocock GM, Schindelin J, Dietz C, Eliceiri KW, Swanson CM, Malim MH, Ahlquist P, Sherer NM (2014) Cooperativity among rev-associated nuclear export signals regulates HIV-1 gene expression and is a determinant of virus species tropism. J Virol 88(24):14,207–14,221. doi:10.1128/JVI.01897-14. http://jvi.asm.org/content/88/24/14207.full.pdf+html
Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, MacDonald D, Moore WJ, Neves C, Patterson A et al (2012) Omero: flexible, model-driven data management for experimental biology. Nat Methods 9(3):245–253
Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2008) KNIME: the Konstanz information miner. Springer, Berlin
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath B, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B et al (2012) Biological imaging software tools. Nat Methods 9(7):697–710
Gunkel M, Flottmann B, Heilemann M, Reymann J, Erfle H (2014) Integrated and correlative high-throughput and super-resolution microscopy. Histochem Cell Biol 141(6):597–603. doi:10.1007/s00418-014-1209-y. http://dx.doi.org/10.1007/s00418-014-1209-y
Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern (6):610–621
Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for cellprofiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180
Khotanzad A, Hong YH (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497
Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, MacDonald D et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782
Ljosa V, Sokolnicki KL, Carpenter AE (2012) Annotated high-throughput microscopy image sets for validation. Nat Methods 9(7):637
Lodermeyer V et al (2013) 90k, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 10(1):11
Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27
Pietzsch T, Preibisch S, Tomančák P, Saalfeld S (2012) Imglib2 - generic image processing in java. Bioinformatics 28(22):3009–3011
Royer LA et al (2015) ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat Methods 12(6):480–481
Saha AK, Kappes F, Mundade A, Deutzmann A, Rosmarin DM, Legendre M, Chatain N, Al-Obaidi Z, Adams BS, Ploegh HL, Ferrando-May E, Mor-Vaknin N, Markovitz DM (2013) Intercellular trafficking of the nuclear oncoprotein dek. Proc Natl Acad Sci 110(17):6847–6852. doi:10.1073/pnas.1220751110
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682
Schölkopf B, Alexander JS (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT, Cambridge
Strauch M, Luedke A, Muench D, Laudes T, Galizia CG, Martinelli E, Lavra L, Paolesse R, Ulivieri A, Catini A, Capuano R, Di Natale C (2014) More than apples and oranges: detecting cancer with a fruit fly’s antenna
Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Dietz, C., Berthold, M.R. (2016). KNIME for Open-Source Bioimage Analysis: A Tutorial. In: De Vos, W., Munck, S., Timmermans, JP. (eds) Focus on Bio-Image Informatics. Advances in Anatomy, Embryology and Cell Biology, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-28549-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-28549-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28547-4
Online ISBN: 978-3-319-28549-8
eBook Packages: MedicineMedicine (R0)