Skip to main content

Recycled Aggregates for Concrete Production: State-of-the-Art

  • Chapter
  • First Online:
Sustainability Improvements in the Concrete Industry

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In the last decades, problems linked to industrial material landfill disposal has become more and more relevant to society, with cost increases for environment and municipalities. Waste reutilization is attractive to reduce economical costs and potential pollution problems, and preserve natural raw resources. In this context, the promotion of recycling in concrete industry may represent a valid route for sustainable development, preventing natural resources consumption, valorizing recycled materials, and avoiding the landfill of huge amount of materials. Nowadays, there are, among others, two significant possibilities to reduce natural aggregates exploitation: the use of recycled concrete from construction and demolition waste (C&DWs) and the use of slag from metallurgical industrial production. Additionally the use of supplementary cementing materials (SCMs) can reduce the great environmental emissions due to cement use. In this chapter, a review about the most commonly used recycled aggregates is given, i.e. recycled aggregates from C&DW and from metallurgical slag, with a special focus about the available codes and normative which regulate their use in structural concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. JRC-IES, European Commission Joint Research Centre, Institute for Environment and Sustainability (2011) Supporting environmentally sound decisions for construction and demolition (C&D) waste management. Publications Office of the European Union, Luxembourg

    Google Scholar 

  2. European Parliament, Council of the European Union (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Official Journal of the European Union

    Google Scholar 

  3. United States Environmental Protection Agency (2009) Estimating 2003 building-related construction and demolition materials amounts. Office of Resource Conservation and Recovery, EPA, US

    Google Scholar 

  4. Monier V, Hestin M, Trarieux M, Mimid S, Domrose L, van Acoleyen M, Hjerp P, Mudgal S (2011) Study on the management of construction and demolition waste in the EU. Contract 07.0307/2009/540863/SER/G2. Final report for the European Commission DG Environment

    Google Scholar 

  5. Kojo R, Lilja R (2011) Talonrakentamisen materiaalitehokkuuden edistäminen (Removing the barriers to material efficiency in house construction). Ympäristöministeriö, Finland

    Google Scholar 

  6. Silva R, de Brito J, Dhir R (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217

    Article  Google Scholar 

  7. Regione del Veneto (2014) Modalità operative per la gestione e l’utilizzo nel settore delle costruzioni di prodotti ottenuti dal recupero e di rifiuti. D.lgs. n. 152/2006 e s.m.i., Parte IV, Titolo I. BUR 69 del 15/09/2014, Venezia, Italy

    Google Scholar 

  8. Dahlbo H, Bachér J, Lähtinen K, Jouttijärvi T, Suoheimo P, Mattila T, Sironen S, Myllymaa T, Saramäki K (2015) Construction and demolition waste management—a holistic evaluation of environmental performance. J Clean Prod. doi:10.1016/j.jclepro.2015.02.073

    Google Scholar 

  9. Vázquez E (ed) (2013) Progress of recycling in the built environment, Final Report of the RILEM Technical Committee 217-PRE. Springer, Berlin

    Google Scholar 

  10. Meinander M, Mroueh UM, Bacher J, Laine-Ylijoki J, Wahlström M, Jermakka J, Teirasvuo N, Törn M, Laaksonen J, Heiskanen J, Kaila J, Vanhanen H, Dahlbo H, Saramäki K, Jouttijärvi T, Mattila T, Retkin R, Suoheimo P, Lähtinen K, Sironen S, Sorvari J, Myllymaa T, Havukainen J, Horttanainen M, Luoranen M (2012) Future development directions of waste recycling. Final report of NeReMa project. http://www.vtt.fi/inf/pdf/technology/2012/T60.pdf. Accessed 30 Aug 2015

  11. Fatta D, Papadopoulos A, Avramikos E, Sgourou E, Moustakas K, Kourmoussis F, Mentzis A, Loizidou M (2003) Generation and management of construction and demolition waste in Greece—an existing challenge. Resour Conserv Recy 40:81–91

    Article  Google Scholar 

  12. Mineral Product Association MPA (2013) Cement fact sheet 6: use of recycled aggregates in concrete. London

    Google Scholar 

  13. Gary Ong KC, Akbarnezhad A (2015) Microwave-assisted concrete technology. CRC Press, Boca Raton

    Google Scholar 

  14. Bergsdal H, Bohne RA, Brattebø H (2008) Projection of construction and demolition waste in Norway. J Ind Ecol 11:27–39

    Article  Google Scholar 

  15. Cochran K, Townsend T, Reinhart D, Heck H (2007) Estimation of regional building-related C&D debris generation and composition: case study of Florida, US. Waste Manage 27:921–931

    Article  Google Scholar 

  16. Ding T, Xiao J (2014) Estimation of building-related construction and demolition waste in Shanghai. Waste Manage 34:2327–2334

    Article  MathSciNet  Google Scholar 

  17. Eurostat (2010) Waste generation by economic activity and households

    Google Scholar 

  18. Rodríguez G, Medina C, Alegre FJ, Asensio E, Sánchez de Rojas MI (2015) Assessment of construction and demolition waste plant management in Spain: in pursuit of sustainability and eco-efficiency. J Clean Prod 90:16–24

    Article  Google Scholar 

  19. Blengini GA, Garbarino E (2010) Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix. J Clean Prod 18:1021–1030

    Article  Google Scholar 

  20. Comité Européen de Normalisation (2008a) EN 13242:2008 aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction. Bruxells, Belgium

    Google Scholar 

  21. Comité Européen de Normalisation (2002) EN 13043:2002—Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas. Bruxells, Belgium

    Google Scholar 

  22. Comité Européen de Normalisation (2010) EN 13285:2010—unbound mixtures—specifications. Bruxells, Belgium

    Google Scholar 

  23. Comité Européen de Normalisation (2013a) EN 14227 serie—hydraulically bound misture. Bruxells, Belgium

    Google Scholar 

  24. Comité Européen de Normalisation (2009) EN 933-11:2009—tests for geometrical properties of aggregates—part 11: classification test for the constituents of coarse recycled aggregate. Bruxells, Belgium

    Google Scholar 

  25. Comité Européen de Normalisation (2006) EN 1744-6:2006—tests for chemical properties of aggregates—part 6: determination of the influence of recycled aggregate extract on the initial setting time of cement. Bruxells, Belgium

    Google Scholar 

  26. Organisme impartial de Contrôle de Produits pour la Construction COPRO (2012) PTV 406 technical prescription recycled aggregates from construction and demolition waste. Zellik, Belgium

    Google Scholar 

  27. Deutschen Instituts für Normung (2002) DIN 4226-100:2002-02. Aggregates for concrete and mortar—part 100: recycled aggregates, Germany

    Google Scholar 

  28. Deutscher ausschuss für elsenbeton DAfStb (1998) Code: concrete with recycled aggregates, Germany

    Google Scholar 

  29. Comité Européen de Normalisation (2013b) EN 206-1:2013. Concrete—specification, performance, production and conformity. Bruxells, Belgium

    Google Scholar 

  30. Deutschen Instituts für Normung (2008) DIN 1045-2:2008-08. Concrete, reinforced and prestressed concrete structures—part 2: Concrete—specification, properties, production and conformity—application rules for DIN EN 206-1. Germany

    Google Scholar 

  31. British Standards Institution BSI (2015) BS 8500-2:2015. Concrete. Complementary British Standard to BS EN 206. Specification for constituent materials and concrete, UK

    Google Scholar 

  32. Italian Ministry of Infrastructures (2008) DM 14/01/2008 Norme Tecniche per le Costruzioni (Technical Standards for Construction), NTC 2008, Italy

    Google Scholar 

  33. Comité Européen de Normalisation (2008b) EN 12620:2008. Aggregates for concrete. Bruxells, Belgium

    Google Scholar 

  34. Ente Italiano di Normazione UNI (2005) UNI 8520-1. Aggregati per calcestruzzo—Istruzioni complementari per l’applicazione della EN 12620—Parte 1: Designazione e criteri di conformità. Italy

    Google Scholar 

  35. Ente Italiano di Normazione UNI (2005) UNI 8520-2. Aggregati per calcestruzzo—Istruzioni complementari per l’applicazione della EN 12620—Parte 2: Requisiti, Italy (in Italian)

    Google Scholar 

  36. Japanese Industrial Standard JIS (2005) JIS A 5021:2005. Recycled aggregate for concrete-class H, Japan

    Google Scholar 

  37. Japanese Industrial Standard JIS (2011) JIS A 5021:2011. Recycled aggregate for concrete-class H. Japan

    Google Scholar 

  38. Japanese Industrial Standard JIS (2012a) JIS A 5022:2012. Recycled concrete using recycled aggregate Class M. Japan

    Google Scholar 

  39. Japanese Industrial Standard JIS (2012b) JIS A 5023:2012. Recycled concrete using recycled aggregate Class L. Japan

    Google Scholar 

  40. Nederlands Normalisatie-instuut (2010) NEN 5905: 2010. Dutch supplement to NEN-EN 12620+A1 Aggregates for concrete. Delft, Nederlands

    Google Scholar 

  41. Laboratório Nacional de Engenharia Civil LNEC (2009a) LNEC E 471: 2009. Guide for the use of recycled aggregates in concrete. Lisboa, Portugal

    Google Scholar 

  42. Laboratório Nacional de Engenharia Civil LNEC (2009b) LNEC E 472: 2009. Guide for the production of recycled hot mix asphalt. Lisboa, Portugal

    Google Scholar 

  43. Laboratório Nacional de Engenharia Civil LNEC (2009c) LNEC E 473: 2009. Guide for the use of recycled aggregates in unbound pavement layers. Lisboa, Portugal

    Google Scholar 

  44. Laboratório Nacional de Engenharia Civil LNEC (2009c) LNEC E 474: 2009. Guide for the use of recycled materials coming from construction and demolition waste in embankment and capping layer of transport infrastructures. Lisboa, Portugal

    Google Scholar 

  45. Ministerio de Fomento (2011) EHE-08: 2011. Comisión Permanente Del Hormigón: Instrucción de Hormigón Estructural, Madrid, Spain (in Spanish)

    Google Scholar 

  46. ASTM International (2013) ASTM C33/C33 M. Standard specification for concrete aggregates. West Conshohocken, PA, US

    Google Scholar 

  47. ASTM International (2014) ASTM C125-14. Standard terminology relating to concrete and concrete aggregates. West Conshohocken, PA, US

    Google Scholar 

  48. Kou S, Poon CS, Etxeberria M (2011) Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. Cem Concr Comp 33:286–291

    Article  Google Scholar 

  49. Kou S, Poon CS, Agrela F (2011) Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem Concr Comp 33:788–795

    Article  Google Scholar 

  50. Schubert S, Hoffmann C, Leemann A, Moser K, Motavalli M (2012) Recycled aggregate concrete: experimental shear resistance of slabs without shear reinforcement. Eng Struct 41:490–497

    Article  Google Scholar 

  51. Fathifazl G, Abbas A, Razaqpur AG, Isgor OB, Fournier B, Foo S (2009) New mixture proportioning method for concrete made with coarse recycled concrete aggregate. J Mater Civ Eng: 601–611

    Google Scholar 

  52. Abbas A, Fathifazl G, Isgor OB, Razaqpur AG, Fournier B, Foo S (2009) Durability of recycled aggregate concrete designed with equivalent mortar volume method. Cem Concr Comp 31:555–563

    Article  Google Scholar 

  53. Vázquez E, Barra M, Aponte D, Jiménez C, Valls S (2013) Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Constr Build Mater 67:61–67

    Article  Google Scholar 

  54. Lima C, Caggiano A, Faella C, Martinelli E, Pepe M, Realfonzo R (2013) Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Constr Build Mater 47:547–559

    Article  Google Scholar 

  55. Barbudo A, de Brito J, Evangelista L, Bravo M, Agrela F (2013) Influence of water reducing admixtures on the mechanical performance of recycled concrete. J Clean Prod 59:93–98

    Article  Google Scholar 

  56. Ferreira L, de Brito J, Barra M (2012) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag Concr Res 63:617–627

    Article  Google Scholar 

  57. Pepe M, Toledo Filho RD, Koenders EAB, Martinelli E (2014) Alternative processing procedures for recycled aggregates in structural concrete. Constr Build Mater 69:124–132

    Article  Google Scholar 

  58. Poon CS, Shui Z, Lam L (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr Build Mater 18:461–468

    Article  Google Scholar 

  59. Li WX, Zhang X, Liu X (2009) Mechanical properties of recycled aggregate concrete. Study of the impact of factors. Chin Concr J 10:60–63

    Google Scholar 

  60. Xiao J, Li J, Zhang C (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem Concr Res 35:1187–1194

    Article  Google Scholar 

  61. Etxeberria M, Vázquez E, Marí A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742

    Article  Google Scholar 

  62. Limbachiya MC, Leelawat T, Dhir RK (2000) Use of recycled concrete aggregate in high-strength concrete. Mater Struct 33:574–580

    Article  Google Scholar 

  63. Ajdukiewicz A, Kliszczewicz A (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem Concr Compos 24:269–279

    Article  Google Scholar 

  64. Otsuki N, Miyazato SI, Yodsudjai W (2003) Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J Mater Civ Eng 15:443–451

    Article  Google Scholar 

  65. Tovar-Rodríguez G, Barra M, Pialarissi S, Aponte D, Vázquez E (2013) Expansion of mortars with gypsum contaminated fine recycled aggregates. Constr Build Mater 38:1211–1220

    Article  Google Scholar 

  66. Sato R, Maruyama I, Sogabe T, Sogo M (2007) Flexural behavior of reinforced recycled concrete beams. J Adv Concr Technol 5:43–61

    Article  Google Scholar 

  67. Ajdukiewicz A, Kliszczewicz A (2007) Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete. J Adv Concr Technol 5:259–273

    Article  Google Scholar 

  68. Fathifazl G, Razaqpur AG, Isgor OB, Abbas A, Fournier B, Foo S (2009) Flexural performance of steel-reinforced recycled concrete beams. ACI Struct J 106:858–867

    Google Scholar 

  69. Choi HB, Yi CK, Cho HH, Kang KI (2010) Experimental study on the shear strength of recycled aggregate concrete beams. Mag Concr Res 62:103–114

    Article  Google Scholar 

  70. Fathifazl G, Razaqpur AG, Isgor OB, Abbas A, Fournier B, Foo S (2009) Shear strength of reinforced recycled concrete beams without stirrups. Mag Concr Res 61:477–490

    Article  Google Scholar 

  71. Corinaldesi V, Letelier V, Moriconi G (2011) Behaviour of beam–column joints made of recycled-aggregate concrete under cyclic loading. Constr Build Mater 25:1877–1882

    Article  Google Scholar 

  72. European Slag Association, European Steel Association (2012) Euroslag and Eurofer. Position Paper on the Status of Ferrous Slag. Duisburg, Germany

    Google Scholar 

  73. Luxàn MP, Sotolongo R, Dorrego F, Herrero E (2000) Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace. Cem Conc Res 30:517–519

    Article  Google Scholar 

  74. Al-Negheimish AI, Al-Sugair FH, Al-Zaid RZ (1997) Utilization of local steel making slag in concrete. J King Saud Univ Eng Sci 9:39–55

    Google Scholar 

  75. Anastasiou F, Papayianni I (2006) Criteria for the use of steel slag aggregates in concrete. In: Konsta-Gdoutos MS (ed) Measuring, monitoring and modeling concrete properties. Springer, The Netherlands, pp 419–426

    Chapter  Google Scholar 

  76. Papayianni I, Anastasiou E (2010) Production of high-strength concrete using high volume of industrial by-products. Constr Build Mater 24:1412–1417

    Article  Google Scholar 

  77. Manso JM, Gonzalez JJ, Polanco JA (2004) Electric arc furnace slag in concrete. J Mater Civ Eng 16:639–645

    Article  Google Scholar 

  78. Xue Y, Wu S, Hou H, Zha J (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater 138:261–268

    Article  Google Scholar 

  79. Ahmedzade P, Sengoz B (2009) Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J Hazard Mater 166:300–305

    Article  Google Scholar 

  80. Pellegrino C, Gaddo V (2009) Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cem Concr Comp 31:663–671

    Article  Google Scholar 

  81. Pellegrino C, Cavagnis P, Faleschini F, Brunelli K (2013) Properties of concretes with black/oxidizing electric arc furnace slag aggregate. Cem Concr Comp 37:232–240

    Article  Google Scholar 

  82. Manso JM, Polanco JA, Losanez M, Gonzalez JJ (2006) Durability of concrete made with EAF slag as aggregate. Cem Concr Comp 28:528–534

    Article  Google Scholar 

  83. Maslehuddin M, Sharif AM, Shameem M, Ibrahim M, Barry MS (2003) Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr Build Mater 17:105–112

    Article  Google Scholar 

  84. Tossavainen M, Engstrom F, Yang Q, Menad N, Larsson ML, Bjorkman B (2007) Characteristics of steel slag under different cooling conditions. Waste Manage 27(7):1335–1344

    Article  Google Scholar 

  85. Daugherty KE, Saad B, Weirich C, Eberendu A (1983) The glass content of slag and hydraulic activity. Silic Ind 4:107–110

    Google Scholar 

  86. Engström F, Björkman B, Samuelsson C (2009) Mineralogical influence of different cooling conditions on leaching behaviour of steelmaking slags. Paper presented at the 1st International Slag Valorisation Symposium, Leuven, 6-7/4/2009

    Google Scholar 

  87. Shi C, Qian J (2000) High performance cementing materials from industrial slag—a review. Resour Conserv Recy 29:195–207

    Article  Google Scholar 

  88. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C (2008) Utilization of steel slag for Portland cement clinker production. J Hazard Mater 152:805–811

    Article  Google Scholar 

  89. Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 9:1118–1125

    Article  Google Scholar 

  90. Pellegrino C, Faleschini F (2013) Experimental behavior of reinforced concrete beams with electric arc furnace slag as recycled aggregate. ACI Mater J 110:197–206

    Google Scholar 

  91. Faleschini F, Fernández-Ruíz MA, Zanini MA, Brunelli K, Pellegrino C, Hernández-Montes E (2015) High performance concrete with electric arc furnace slag as aggregate: mechanical and durability properties. Constr Build Mater 101:113–121

    Article  Google Scholar 

  92. Bouzoubaâ N, Zhang MH, Malhotra VM, Golden DM (1996) Blended fly ash cements—a review. ACI Mater J 96:641–650

    Google Scholar 

  93. Siddique R, Khatib JM (2010) Abrasion resistance and mechanical properties of high-volume fly ash concrete. Mater Struct 42:709–718

    Article  Google Scholar 

  94. Papadakis VG, Tsimas S (2002) Supplementary cementing materials in concrete. Part I: efficiency and design. Cem Concr Res 32:1525–1532

    Article  Google Scholar 

  95. Papadakis VG, Antiohos S, Tsimas S (2002) Supplementary cementing materials in concrete. Part II: a fundamental estimation of the efficiency factor. Cem Concr Res 32:1533–1538

    Article  Google Scholar 

  96. Aponte DF, Barra M, Vàzquez E (2012) Durability and cementing efficiency of fly ash in concrete. Constr Build Mater 30:537–546

    Article  Google Scholar 

  97. Bentz DP, Garboczi EJ (1991) Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone. ACI Mater J 88:518–529

    Google Scholar 

  98. Aughenbaugh KL, Chancey RT, Stutzman P, Juenger MC, Fowler DW (2013) An examination of the reactivity of fly ash in cementitious pore solutions. Mater Struct 46:869–880

    Article  Google Scholar 

  99. Ranganath RV, Bhattacharjee B, Krishnsmoorthy S (1998) Influence of size fraction of ponded ash on its pozzolanic activity. Cem Concr Res 28:749–761

    Article  Google Scholar 

  100. Siddique R, Aggarwal P, Aggarwal Y (2012) Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash. Constr Build Mater 29:73–81

    Article  Google Scholar 

  101. Eren O (2002) Strength development of concretes with ordinary Portland cement, slag or fly ash cured at different temperatures. Mater Struct 235:536–540

    Article  Google Scholar 

  102. ASTM International (2008) ASTM C618-08a. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA, US

    Google Scholar 

  103. Comité Européen de Normalisation (2012) EN 450-1: 2012. Fly ash for concrete—part 1: definition, specifications and conformity criteria. Bruxells, Belgium

    Google Scholar 

  104. de Brito J, Saikia N (2013) Recycled aggregate in concrete. Green energy and technology. Springer-Verlag, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pellegrino .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pellegrino, C., Faleschini, F. (2016). Recycled Aggregates for Concrete Production: State-of-the-Art. In: Sustainability Improvements in the Concrete Industry. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28540-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28540-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28538-2

  • Online ISBN: 978-3-319-28540-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics