Advertisement

Dipsacaceae (inclusive Triplostegia)

Dipsacaceae Jussieu, Gen. Pl.: 194 (1789), nom. cons.
Chapter
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 14)

Abstract

Annual, biennial or perennial herbs, rarely woody semi-shrubs or shrubs. Leaves opposite, sometimes whorled, often in a basal rosette; entire or toothed to deeply pinnatifid or pinnately dissected, stipules 0; indumentum of uni- or multicellular, sometimes glandular hairs. Flowers in dense involucrate capitula; receptacle almost flat, hemispherical or cylindrical, mostly with scaly bracts, when scales absent with hairs or naked. Flowers bisexual, marginal flowers often female, 4- or 5-merous, actinomorphic or zygomorphic, with an epicalyx of 4 fused and strongly modified bracts surrounding the ovary; calyx small, cupuliform or rarely divided into 4–5 lobes or more often modified into 4 or 5 spiny setae, in some genera setae pappus-like and multiplied to up to 25, persistent or non-persistent; stamens 4 (in one species 2), filaments attached to corolla tube; gynoecium inferior with one fertile carpel, unilocular, ovule anatropous, unitegmic; style slender, stigma 1-, 2- or 3-lobed or capitate; flowers proterandrous. Fruit a dry, single-seeded nutlet (cypsela) enclosed in the quadrangular or cylindrical, ± lignified epicalyx, in Triplostegia a double epicalyx; the latter variously differentiated, often surmounted by a persistent calyx; Knautia with a fleshy appendage (elaiosome). Seeds with a large spathulate embryo and fleshy, oily endosperm. x = 5, 7, 8, 9, 10.

Keywords

Corolla Tube Glandular Hair Floral Bract Involucral Bract Plumose Seta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected Bibliography

  1. Airy Shaw, H.K. 1964. Diagnoses of new families, new names, etc., for the seventh edition of Willis’s ‘Dictionary’. Kew Bull. 18: 249–271.CrossRefGoogle Scholar
  2. Akimaliev, A., Alimbaeva, P.K., Mzhel’skaya, L.G., Abubakirov, N.K. 1971. Triterpene glycosides of Scabiosa soongorica II. The structure of songorosides C, G and I. Chem. Nat. Comp. 12: 415–418.CrossRefGoogle Scholar
  3. Alvarado, S. 1927. Der morphologische Aufbau des Hüllkelches der Dipsacaceen. Bot. Jahrb. Syst. 61, Beiheft 138: 10–21.Google Scholar
  4. APG III 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.Google Scholar
  5. Avino, M., Tortoriello, G., Caputo, P. 2009. A phylogenetic analysis of Dipsacaceae based on four DNA regions. Plant Syst. Evol. 279: 69–86.CrossRefGoogle Scholar
  6. Backlund, A., Bremer, B. 1998. To be or not to be. Principles of classification and monotypic plant families. Taxon 47: 391–400.Google Scholar
  7. Backlund, A., Moritz, T. 1998. Phylogenetic implications of an expanded valepotriate distribution in the Valerianaceae. Biochem. Syst. Ecol. 26: 309335.CrossRefGoogle Scholar
  8. Backlund, A., Nilsson, S. 1997. Pollen morphology and the systematic position of Triplostegia (Dipsacales). Taxon 46: 21–31.CrossRefGoogle Scholar
  9. Baksay, L. 1952. Monographie der Gattung Succisa. Ann. Hist.-Nat. Mus. Natl. Hung., n.s. 2: 237–260.Google Scholar
  10. Baksay, L. 1955. Anatomische und systematische Untersuchungen über die Gattung Succisella. Ann. Hist.-Nat. Mus. Natl. Hung., n.s. 6: 167–176.Google Scholar
  11. Behnke, H.-D. 1994. Sieve-element plastids: Their significance for the systematics and evolution of the order. In: Behnke, H.-D., Mabry, T.J. (eds.) Caryophyllales: Evolution and systematics. Berlin: Springer, pp. 87–121.CrossRefGoogle Scholar
  12. Bell, C.D. 2004. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Mol. Phylog. Evol. 31: 340–350.CrossRefGoogle Scholar
  13. Bell, C.D., Donoghue, M.J. 2005. Dating the Dipsacales: Comparing models, genes and evolutionary implications. Amer. J. Bot. 92: 284–296.Google Scholar
  14. Bell, C.D., Edwards, E J., Kim, S.-T., Donoghue, M.J. 2001. Dipsacales phylogeny based on chloroplast DNA sequences. Harvard Pap. Bot. 6: 481–499.Google Scholar
  15. Bensky, D., Gamble, A. 1993. Chinese herbal medicine: materia medica. Seattle, Washington: Eastland Press.Google Scholar
  16. Burtt, B.L. 1999. The importance of some far Eastern species of Dipsacaceae in the history of the family. In: Tandon, R.K., Prithipalsingh (eds.) India, Scientific Publications: 131–139.Google Scholar
  17. Caputo, P., Cozzolino, S. 1994. A cladistic analysis of the Dipsacaceae (Dipsacales). Plant Syst. Evol. 189: 41–63.CrossRefGoogle Scholar
  18. Caputo, P., Cozzolino, S., Moretti, A. 2004. Molecular phylogenetics of Dipsacaceae reveals parallel trends in seed dispersal syndromes. Plant Syst. Evol. 246: 163–175.CrossRefGoogle Scholar
  19. Carlquist, S. 1982. Wood anatomy of Dipsacaceae. Taxon 31: 443–450.CrossRefGoogle Scholar
  20. Carlson, S.E., Mayer, V., Donoghue, M.J. 2009. Phylogenetic relationships, taxonomy, and morphological evolution in Dipsacaceae (Dipsacales) inferred by DNA sequence data. Taxon 58: 1075–1091.Google Scholar
  21. Carlson SE, Linder HP, Donoghue MJ. 2012. The historical biogeography of Scabiosa (Dipsacaceae): Implications for Old World plant disjunctions. Biogeogr. 39: 1086–1100.Google Scholar
  22. Čelakovsky, L. 1893. Über den Blütenstand von Morina und den Hüllkelch (Außenkelch) der Dipsacaceen. Bot. Jahrb. Syst. 17: 395–418.Google Scholar
  23. Christopoulou, C., Graikou, K., Chinou, I. 2008. Chemosystematic value of chemical constituents from Scabiosa hymettia (Dipsacaceae). Chem. Biodiv. 5: 318–322.CrossRefGoogle Scholar
  24. Clarke, G., Jones, M.R. 1981. The Northwest European pollen flora, 21: Dipsacaceae. Rev. Palaeobot. Palynol., Netherl. 33: 1–25.Google Scholar
  25. Coulter, T. 1823. Mémoire sur les Dipsacées. Mém. Soc. Phys. Genève 2: 13–60.Google Scholar
  26. Cronquist, A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press.Google Scholar
  27. Devesa, J.A. 1984. Pseudoscabiosa, genero nuevo de Dipsacaceae. Lagascalia 12: 213–221.Google Scholar
  28. Díaz Lifante, Z., Luque, T., Santa Bárbara, C. 1992. Chromosome numbers of plants collected during Iter Mediterraneum II in Israel. Bocconea 3: 229–250.Google Scholar
  29. Diez, M.J., Devesa, J.A. 1981. Contribution al estudio palinologica del genero Scabiosa L. (Dipsacaceae) en la Peninsula Iberica y Baleares. Bot. Macaronés., IV Ci 8–9: 129–146.Google Scholar
  30. Donoghue, M.J., Bell, C.D., Winkworth, R.C. 2003. The evolution of reproductive characters in Dipsacales. Int. J. Plant Sci. 164: S453–S464.CrossRefGoogle Scholar
  31. Ehrendorfer, F. 1962. Beiträge zur Phylogenie der Gattung Knautia (Dipsacaceae), I. Cytologische Grundlagen und allgemeine Hinweise. Österr. Bot. Z. 109: 276–343.Google Scholar
  32. Ehrendorfer, F. 1964. Über stammesgeschichtliche Differenzierungsmuster bei den Dipsacaceen. Ber. Deutsch. Bot. Ges. 77 (Sondernummer): 83–94.Google Scholar
  33. Ehrendorfer, F. 1965. Evolution and karyotype differentiation in a family of flowering plants: Dipsacaceae. Genetics Today. Proc. XI Int. Congr. Genetics, The Hague, The Netherlands, 1963, 2: 399–407.Google Scholar
  34. Erdtman, C. 1952. Pollen morphology and plant taxonomy. Stockholm: Almquist & Wiksell.Google Scholar
  35. Frajman B, Rešetnik I, Weiss-Schneeweiss H, Ehrendorfer F, Schönswetter P. 2015. Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae). BMC Evolutionary Biology 15: 140–157.Google Scholar
  36. Frey, L. 1976. Embryological studies on Scabiosa lucida Vill. and Scabiosa ochroleuca L. in Poland. Acta Biol. Cracov., Ser. Bot. 19: 173–179.Google Scholar
  37. Garcia Gímenez, M.D., Marhuenda Requena, E., Saenz Rodrigez, M.T. 1988. Contribution to the pharmacodynamic study of Scabiosa atropurpurea L.: III. Diuretic activity. Pl. Méd. Phytothérap. 22: 175–179.Google Scholar
  38. Goebel, K. 1924. Die Entfaltungsbewegungen der Pflanzen und deren teleologische Deutung. Jena: Gustav Fischer.Google Scholar
  39. Graikou, K., Aligiannis, N., Ioanna B. Chinou, I.B., Harvala, C. 2002. Cantleyoside-dimethyl-acetal and other iridoid glucosides from Pterocephalus perennis - Antimicrobial activities. Z. Naturforsch. 57c: 95–99.Google Scholar
  40. Graikou, K., Aligiannis, N., Chinou, I.B. 2006. Chemical constituents from Pterocephalus perennis subsp. perennis (Dipsacaceae). Biochem. Syst. Ecol. 34: 438–441.Google Scholar
  41. Greuter; W., Raus, Th. (eds.) 1985. Med-Checklist Notulae, 11. Willdenowia 15: 72–76.Google Scholar
  42. Gülcemal, D., Masullo, M., Alankus-Calıskan, O., Karayıldırım, T., Senol, S.G., Piacente, S., Bedir, E. 2010. Monoterpenoid glucoindole alkaloids and iridoids from Pterocephalus pinardii. Magn. Reson. Chem. 48: 239–243.PubMedGoogle Scholar
  43. Günthart, A. 1904. Blütenbiologische Untersuchungen. Beiträge zur Blütenbiologie der Dipsacaceen. Flora 93: 199.Google Scholar
  44. Hedberg, I., Hedberg, O. 1976. The genus Dipsacus in tropical Africa. Bot. Not. 129: 383–389.Google Scholar
  45. Herrera, M.D., Marhuenda, E., Saenz, M.T. 1990. Contribution to the pharmacodynamic study of Pycnocomon rutifolium (Vahl.) Hoffmansegg & Link: Antiinflammatory activity and antibacterial activity. Ann. Pharm. Franç. 48: 81–86.PubMedGoogle Scholar
  46. Hidalgo, O., Garnatje, T., Susanna, A., Mathez, J.L. 2004. Phylogeny of Valerianaceae based on matK and ITS markers, with reference to matK individual polymorphism. Ann. Bot. 93: 283–293.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hilger, H.H., Hoppe, M. 1984. Die Entwicklung des Außenkelchs von Scabiosa Sekt. Sclerostemma und Trochocephalus (Dipsacaceae). Beitr. Biol. Pflanzen 59: 55–73.Google Scholar
  48. Höck, F. 1897. Dipsacaceae. In: Engler, A., Prantl, K. (eds.) Die natürlichen Pflanzenfamilien 22 (IV, 4–5). Leipzig: Wilhelm Engelmann, pp. 183–189.Google Scholar
  49. Höck, F. 1902. Verwandtschaftsbeziehungen der Valerianaceae und Dipsacaceae. Bot. Jahrb. Syst. 31: 405–411.Google Scholar
  50. Hung, T.M., Na, M.K., Thuong, P.T., Su, N.D., So, D.E., Song, K.S., Seong, Y.H., Bae, K.H. 2006. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 108: 188–192.CrossRefPubMedGoogle Scholar
  51. Jacobs, B., Geuten, K., Pyck, N., Huysmans, S., Jansen, S., Smets, E. 2011. Unraveling the phylogeny of Heptacodium and Zabelia (Caprifoliaceae): An interdisciplinary approach. Syst. Bot. 36: 231–252.Google Scholar
  52. Jensen, S.R. 1991. Plant iridoids, their biosynthesis and distribution in Angiosperms. In: Harborne & Barbaran (eds.) Annual Proceedings of the Phytochemical Society of Europe. Ecological Chemistry and Biochemistry of Plant Terpenoids. Oxford: Oxford University Press, pp. 133–158.Google Scholar
  53. Jensen, S.R., Nielsen, B.J., Dahlgren, R. 1975. Iridoid compounds, their occurrence and systematic importance in the Angiosperms. Bot. Not. 128: 148–180.Google Scholar
  54. Johri, B.M., Ambegaokar, K.B., Srivastava, P.S. 1992. Comparative embryology of Angiosperms, vol. 2. Berlin: Springer, pp. 782–798.CrossRefGoogle Scholar
  55. Kachidze, N. 1929. Karyologische Studien über die Familie der Dipsacaceae. Planta 7: 482–502.CrossRefGoogle Scholar
  56. Kamelena, O.P. 1980. Sravnitel’naya embriologiya semeistv Dipsacaceae i Morinaceae. Leningrad: Nauka (in Russian).Google Scholar
  57. Kırmızıgül, S., Anil, H., Rose, M.E. 1995. Triterpenoid glycosides from Cephalaria transsilvanica. Phytochemistry 39: 1171–1174.CrossRefPubMedGoogle Scholar
  58. Kırmızıgül, S., Anıl, H., Uçar, F., Akdemir, K. 1996. Antimicrobial and antifungal activities of three new triterpenoid glycosides. Phytother. Res. 10: 274–276.CrossRefGoogle Scholar
  59. Kocsis, Á., Szabó, L.F., Podányi, B. 1993. New bis-iridoids from Dipsacus laciniatus. J. Nat. Prod. (Lloydia) 56: 1486–1499.CrossRefGoogle Scholar
  60. Kugler, H. 1955. Einführung in die Blütenökologie. Stuttgart: Gustav Fischer.Google Scholar
  61. Larsson, M. 2005. Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae). Oecologia 146: 394–403.CrossRefPubMedGoogle Scholar
  62. Liu, J.-J., Wang, X.-L., Guo, B.-L., Huang, W.-H., Xiao, P.-G., Huang, C.-Q., Zheng, L.-Z., Zhang, G., Qin, L., Tu, G.-Z. 2011. Triterpenoid saponins from Dipsacus asper and their activities in vitro. J. Asian Nat. Prod. Res. 13: 851–860.CrossRefPubMedGoogle Scholar
  63. López González, G. 1987. Pterocephalidium, un nuevo género ibérico de la familia Dipsacaceae. Anales Jard. Bot. Madrid 43: 245–252.Google Scholar
  64. Ma, W.G., Wang, D.Z., Zeng, Y.L., Yang C.H. 1991. Three triterpenoid saponins from Triplostegia grandiflora. Phytochemistry 30: 3401–3404.CrossRefPubMedGoogle Scholar
  65. Ma, W.G., Wang, D.Z., Zeng, Y.L., Yang C.H. 1992. Triterpenoid saponins from Triplostegia grandiflora. Phytochemistry 31: 1343–1347.CrossRefPubMedGoogle Scholar
  66. Mayer, V. 1995. The epicalyx in fruits of Scabiosa and Tremastelma (Dipsacaceae): Anatomy and ecological significance. Bot. Jahrb. Syst. 117: 211–238.Google Scholar
  67. Mayer, V., Ehrendorfer, F. 1999. Fruit differentiation, palynology, and systematics in the Scabiosa group of genera and Pseudoscabiosa (Dipsacaceae). Plant Syst. Evol. 216: 135–166.CrossRefGoogle Scholar
  68. Mayer, V., Ehrendorfer, F. 2000. Fruit differentiation, palynology, and systematics in Pterocephalus Adanson and Pterocephalodes, gen. nov. (Dipsacaceae). Bot. J. Linn. Soc. 132: 247–278.CrossRefGoogle Scholar
  69. Mayer, V., Ehrendorfer, F. 2013. The phylogenetic position of Pterocephalidium and the new African genus Pterothamnus within an improved classification of Dipsacaceae. Taxon 62: 112–126.Google Scholar
  70. Mayer, V., Svoma, E. 1998. Development and function of the elaiosome in Knautia (Dipsacaceae). Bot. Acta 111: 402–410.CrossRefGoogle Scholar
  71. Metcalfe, C.R., Chalk, L. 1950. Anatomy of dicotyledons, vol. 2: 780–781. Oxford: Clarendon Press.Google Scholar
  72. Molliard, M. 1895. Recherches sur les Cécidies florales. Ann. Sci. Nat., Bot. 8, 1: 67–245.Google Scholar
  73. Moore, D.M. 1976. Dipsacaceae. In: Tutin, T.G. et al. (eds.) Flora Europea 4: 56–74. Cambridge: Cambridge University Press.Google Scholar
  74. Movsumov, I.S., Garaev, E.A., Isaev, M.I. 2006. Flavonoids from Cephalaria gigantea flowers. Chem. Nat. Comp. 42: 677–680.CrossRefGoogle Scholar
  75. Muller, J. 1981. Fossil pollen records of extant Angiosperms. Bot. Rev. 47: 1–142CrossRefGoogle Scholar
  76. Müller, H. 1873. Die Befruchtung der Blumen durch Insekten und die gegenseitige Anpassung beider. Leipzig: Wilhelm Engelmann.CrossRefGoogle Scholar
  77. Neubauer, H.F. 1978. On nodal anatomy and petiolar vascularization of some Valerianaceae and Dipsacaceae. Phytomorphology 28: 431–436.Google Scholar
  78. Pasi, S. Aligiannis, N., Skaltsounis, A.L., Chinou, I.B. 2002. A new lignan glycoside and other constituents from Cephalaria ambrosioides. Nat. Prod. Lett. 16: 365–370.CrossRefPubMedGoogle Scholar
  79. Peng, C.-I., Tobe, H., Takahashi, M. 1995. Reproductive morphology and relationships of Triplostegia (Dipsacales). Bot. Jahrb. Syst. 116: 505–516.Google Scholar
  80. Perdetzoglou, D.K., Skaltsa, H., Tzakou, O., Harvala, C. 1994. Comparative phytochemical and morphological study of two species of the Scabiosa L. genus. Feddes Repert. 105: 157–165.CrossRefGoogle Scholar
  81. Proctor, M., Yeo, P., Lack, A. 1996. The natural history of pollination. London: Harper Collins.Google Scholar
  82. Pyck, N., Smets, E. 2004. On the systematic position of Triplostegia (Dipsacales): a combined molecular and morphological approach. Belgian J. Bot. 137: 125–139.Google Scholar
  83. Rector, B.G., Harizanova, V., Sforza, R., Widmer, T. Wiedemann, R.N. 2006. Prospects for biological control of teasels, Dipsacus spp., a new target in the United States. Biolog. Control 36: 1–14.CrossRefGoogle Scholar
  84. Reichenbach, H.G.L. 1850. Icones florae Germanicae et Helveticae. Vol. XII. Leipzig: F. Hofmeister.Google Scholar
  85. Ridley, H.N. 1930. The dispersal of plants throughout the world. Ashford (Kent): L. Reeve.Google Scholar
  86. Romo, A., Cirujano, S. Peris, J.B., Stuebing, G. 1997. Contributions to the knowledge of the genus Pseudoscabiosa (Dipsacaceae). Feddes Repert. 108: 31–38.CrossRefGoogle Scholar
  87. Ryder, M.L. 1994. Fascinating Fullonum. Circaea 11: 23–31.Google Scholar
  88. Sarıkahya, N.B., Pekmez, M., Arda, N., Kayce, P., Yavaşoğlu, N.U.K., Kırmızıgül, S. 2011. Isolation and characterization of biologically active glycosides from endemic Cephalaria species in Anatolia. Phytochem. Lett. 4: 415–420.CrossRefGoogle Scholar
  89. Sernander, R. 1906. Entwurf einer Monographie der europäischen Myrmekochoren. Kungl. Svenska Vetenskapsakad. Handl. 41: 1–409.Google Scholar
  90. Solereder, H. 1899. Systematische Anatomie der Dicotyledonen. Stuttgart: Ferdinand Enke.Google Scholar
  91. Soltis, D.E., Smith, S.A., Cellinese, N., Wurdack, K.J., Tank, D.C., Brockington, S.F., Refulio-Rodriguez, N.F., Walker, J.B., Moore, M.J., Carlsward, B.S. et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. Amer. J. Bot. 98: 704–730.CrossRefGoogle Scholar
  92. Szabó, Z. 1905. Monographie der Gattung Knautia. Bot. Jahrb. Syst. 36: 389–442.Google Scholar
  93. Szabó, Z. 1922. A Cephalaria genus rendszere. Math. Term. Értes. 39: 267–275.Google Scholar
  94. Szabó, Z. 1923. The development of the flower of the Dipsacaceae. Ann. Bot. 37: 325–334.Google Scholar
  95. Szabó, Z. 1930. Entwicklungsgeschichtliche Deutung des Blütenstandes der Dipsacaceen. Szent István Akadémia Ertesítöje 1: 55–72.Google Scholar
  96. Szabó, Z. 1940. Monographie der Gattung Cephalaria. Math. Természettud. Közlem 38. 352 pp.Google Scholar
  97. Szafer, W. 1954, Plioceriska flora okolic Czorsztyna i jej stosunek do Plejstocenu. Warsaw: Inst. Geol. Publ., v. 11, 238 pp.Google Scholar
  98. Tomassini, L., Foddai, S., Nicoletti, M. 2004. Iridoids from Dipsacus ferox (Dipsacaceae). Biochem. Syst. Ecol. 32: 1083–1085.CrossRefGoogle Scholar
  99. Valdez, B., Diez, M.J., Fernandez, I. 1987. Atlas polinico de Andalucia occidental. Spain: Instituto de desarrollo regional no. 43, Universidad de Sevilla. EXCMA. Diputacion de Cadiz.Google Scholar
  100. Vange, V. 2002. Breeding system and inbreeding depression in the clonal plant species Knautia arvensis (Dipsacaceae): implications for survival in abandoned grassland. Biol. Cons. 108: 59–67.CrossRefGoogle Scholar
  101. Van Tieghem, P. 1909. Remarques sur les Dipsacées. Ann. Sci. Nat. Bot., ser. 9, 10: 148–200.Google Scholar
  102. Van Wyk, B.-E., van Oudtshoorn, B., Gericke, N. 1997. Medical plants of South Africa. Pretoria: Briza Publications.Google Scholar
  103. Verlaque, R. 1977. Rapports entre les Valerianaceae, les Morinaceae et les Dipsacaceae. Bull. Soc. Bot. France 124: 475–482.CrossRefGoogle Scholar
  104. Verlaque, R. 1981. Utilisation des caractères du pollen pour la réorganisation taxinomique de la famille des Dipsacaceae. Compt. Rend. Hebd. Séances Acad. Sci. 293: 351–354.Google Scholar
  105. Verlaque, R. 1984. Etude biosystématique et phylogénétique des Dipsacaceae. I. Délimination des Dipsacaceae à l’intérieur des Dipsacales, rapports avec les autres familles de l’ordre. Rev. Gen. Bot. 91: 81–121.Google Scholar
  106. Verlaque, R. 1985a. Étude biosystématique et phylogénétique des Dipsacaceae. II. Caractères généraux des Dipsacaceae. Rev. Cytol. Biol. Vég. Botaniste 8: 117–168.Google Scholar
  107. Verlaque, R. 1985b. Étude biosystématique et phylogénétique des Dipsacaceae. III. Tribus des Knautieae et Dipsaceae. Rev. Cytol. Biol. Vég. Botaniste 8: 171–243.Google Scholar
  108. Verlaque, R. 1986a. Étude biosystématique et phylogénétique des Dipsacaceae. IV. Tribu des Scabioseae (phylum No 1,2,3). Rev. Cytol. Biol. Vég. Botaniste 9: 5–72.Google Scholar
  109. Verlaque, R. 1986b. Étude biosystématique et phylogénétique des Dipsacaceae. IV. Tribu des Scabioseae (phylum No 4). Rev. Cytol. Biol. Vég. Botaniste 9: 97–176.Google Scholar
  110. Wagenitz, W., Laing, B. 1984. Die Nektarien der Dipsacales und ihre systematische Bedeutung. Bot. Jahrb. 104: 483–507.Google Scholar
  111. Weberling, F. 1961. Die Infloreszenzen der Valerianaceen und ihre systematische Bedeutung. Abh. Akad. Wiss. Lit. Mainz, math.-naturw. Kl. 5: 153–281.Google Scholar
  112. Winkworth, R.G., Bell, C.D., Donoghue, M.J. 2008. Mitochondrial sequence data and Dipsacales phylogeny: Mixed models, partitioned Bayesian analyses, and model selection. Mol. Phylog. Evol. 46: 830–843.CrossRefGoogle Scholar
  113. Yang, P., Li, Y., Liu, X., Jiang, S. 2007. Determination of free isomeric oleanolic acid and ursolic acid in Pterocephalus hookeri by capillary zone electrophoresis. J. Pharm. Biomed. Anal. 43: 1331–1334.CrossRefPubMedGoogle Scholar
  114. Zhang, W.-H., Chen, Z.-D., Ki, J.-H., Chen, Y.-C., Anndtang, H.-B. 2003. Phylogeny of the Dipsacales s.l. based on chloroplast trnL and ndhF sequences. Mol. Phylog. Evol. 26: 176–189.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Botany and Biodiversity Research, Faculty of Life SciencesUniversity of ViennaViennaAustria

Personalised recommendations