Revisiting the 2001 Peruvian Earthquake and Tsunami Impact Along Camana Beach and the Coastline Using Numerical Modeling and Satellite Imaging

Part of the Coastal Research Library book series (COASTALRL, volume 14)


On June 23, 2001, a moment magnitude Mw 8.4 earthquake occurred off the southern coast of Peru causing substantial damage to urban and agricultural areas. The tsunami generated by this earthquake reached up to 7 m run-up height and extended over 1.3 km inundation. This paper aims to revisit the impact of the 2001 Peruvian tsunami on the coastal area and its morphology along Camana city. The tsunami source is reconstructed through inversion of tsunami waveform records observed at several tide gauge stations and the impact is analyzed using the numerical result and moderate-resolution satellite images to calculate the inundation features in the coast. Finally we propose the tsunami source model suitable for further analysis of this event through tsunami numerical simulations. In addition, environmental changes, in particular the impact to vegetation areas, were evaluated using satellite imagery. An important reduction of agricultural areas due to tsunami impact and soil salinization was confirmed.


Peru earthquake Tsunami source Inversion Modeling Remote sensing 


  1. Aburaya T, Imamura F (2002) The proposal of a tsunami run–up simulation using combined equivalent roughness. Annu J Coast Eng Japan Soc Civ Eng 49:276–280Google Scholar
  2. Adriano B, Koshimura S, Fujii Y (2011) Validation of tsunami inundation modeling for the June 23, 2001 Peru Earthquake. In: 8th international conference on urban earthquake engineering, pp 1800–1804Google Scholar
  3. Adriano B, Koshimura S, Fujii Y (2012) Tsunami source and inundation modeling of the June 2001 Peru earthquake. In: 9th international conference on urban earthquake engineering/4th Asia conference on earthquake engineering, pp 2061–2065. Accessed 9 Feb 2015
  4. Aida I (1978) Reliability of a tsunami source model derived from fault parameters. J Phys Earth 26(1):57–73. doi: 10.4294/jpe1952.26.57 CrossRefGoogle Scholar
  5. Audemard MF, Gómez JC, Tavera HJ, Orihuela GN (2005) Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, southern coastal Peru. Eng Geol 78(3-4):237–255. doi: 10.1016/j.enggeo.2004.12.007 CrossRefGoogle Scholar
  6. Bilek SL (2002) Analysis of the 23 June 2001 Mw 8.4 Peru underthrusting earthquake and its aftershocks. Geophys Res Lett 29(20), CitelD1960. doi: 10.1029/2002GL015543 Google Scholar
  7. Chander G, Helder DL, Markham BL, Dewald JD, Kaita E, Thome KJ, Micijevic E, Ruggles TA (2004) Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Trans Geosci Remote Sens 42:2747–2760. doi: 10.1109/TGRS.2004.836388 CrossRefGoogle Scholar
  8. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903. doi: 10.1016/j.rse.2009.01.007 CrossRefGoogle Scholar
  9. Dengler L (2001) Impacts of the June 23, 2001 Peru tsunami [online]. Available from: Project/short_peru_report.pdf. Accessed 5 Feb 2015
  10. Dorbath L, Cisternas A, Dorbath C (1990) Assessment of the size of large and great historical earthquakes in Peru. Bull Seismol Soc Am 80(3):551–576. Accessed May 2015
  11. Dutta D, Alam J, Umeda K, Hayashi M, Hironaka S (2007) A two-dimensional hydrodynamic model for flood inundation simulation: a case study in the lower Mekong river basin. Hydrol Process 21(9):1223–1237. doi: 10.1002/hyp.6682 CrossRefGoogle Scholar
  12. Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97(1A):S192–S207. doi: 10.1785/0120050613 CrossRefGoogle Scholar
  13. Giovanni MK (2002) The June 23, 2001 Peru earthquake and the southern Peru subduction zone. Geophys Res Lett 29(21):2018. doi: 10.1029/2002GL015774 CrossRefGoogle Scholar
  14. Goring DG (2002) Response of New Zealand waters to the Peru tsunami of 23 June 2001. N Z J Mar Freshw Res 36(1):225–232. doi: 10.1080/00288330.2002.9517081 CrossRefGoogle Scholar
  15. Imamura F (1996) Review of tsunami simulation with a finite-difference method. In: Yeh H, Liu P, Synolakis C (eds) Long-wave runup models, World Scientific, pp 25–42. ISBN: 981-02-2909-7Google Scholar
  16. International Tsunami Survey Team (2001a) Impacts of the 2001 Peru tsunami in Camana. In: International tsunami symposium proceedings, p 409Google Scholar
  17. International Tsunami Survey Team (2001b) Report of the June 23, 2001 Peruvian tsunami field survey of the International Tsunami Survey Team (ITST). Accessed April 2015
  18. International Tsunami Survey Team (2001c) The Peruvian tsunami of 23 June 2001: preliminary report by the International Tsunami Survey Team. In: International tsunami symposium proceedings, pp 377–378Google Scholar
  19. Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–482CrossRefGoogle Scholar
  20. Jaffe BE, Gelfenbaum G, Rubin D, Peters R, Anima R, Swensson M, Olcese D, Anticona LB, Gomez JC, Riega PC (2003) Identification and interpretation of tsunami deposits from the June 23, 2001 Peru tsunami. In: International conference on coastal sediments, p 13Google Scholar
  21. Japan Society of Civil Engineers (2002) Tsunami assessment method for nuclear power plants in Japan, 72pGoogle Scholar
  22. Jimenez C, Adriano B, Koshimura S, Fujii Y (2011) The tsunami of Camana 2001. In: 8th international conference on urban earthquake engineering, pp 1567–1571Google Scholar
  23. Kikuchi M, Yamanaka Y (2001) Near coast of Peru earthquake (Mw 8.2) on June 23, 2001. Accessed April 2015
  24. Kotani M, Imamura F, Shuto N (1998) Tsunami run-up simulation and damage estimation by using GIS. In: Proceedings of coastal engineering, JSCE 45, pp 356–360Google Scholar
  25. Markham BL, Helder DL (2012) Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens Environ 122:30–40. doi: 10.1016/j.rse.2011.06.026 CrossRefGoogle Scholar
  26. MINSA/OPS Ministerio de Salud – Organizacion Panamericana de la Salud (2005) El Terremoto y Maremoto del Sur del Peru 2001. Accessed Feb 2015
  27. Ocola L (2008) Southern Perú coseismic subsidence: 23 June 2001 8.4-Mw earthquake. Adv Geosci 14:79–83. doi: 10.5194/adgeo-14-79-2008 CrossRefGoogle Scholar
  28. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154. Accessed Aug 2012
  29. Okal E, Dengler L, Araya S, Borrero J, Gomer B, Koshimura S, Laos G, Olcese D, Ortiz M, Swensson M, Titov V, Vegas F (2002) Field survey of the Camaná, Perú tsunami of 23 June 2001, Seismol. Res Lett 73(6):907–920. doi: 10.1785/gssrl.73.6.907 Google Scholar
  30. Olcese D (2004) Estudio del origen y consecuencias del tsunami del 23 de Junio del 2001 en la costa sur del Peru, National University of Engineering, PeruGoogle Scholar
  31. Rodriguez-Marek A, Bay JA, Park K, Montalva GA, Cortez-Flores A, Wartman J, Boroschek R (2010) Engineering analysis of ground motion records from the 2001 M w 8.4 Southern Peru earthquake. Earthq Spectra 26(2):499–524. doi: 10.1193/1.3381172 CrossRefGoogle Scholar
  32. Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys PAGEOPH 144(3–4):455–470. doi: 10.1007/BF00874378 Google Scholar
  33. Shoji G, Shimizu H, Koshimura S, Estrada M, Jimenez C (2014) Evaluation of tsunami wave loads acting on walls of confined-masonry-brick and concrete-block houses. J Disaster Res 9(6):976–983CrossRefGoogle Scholar
  34. Spiske M, Piepenbreier J, Benavente C, Bahlburg H (2013) Preservation potential of tsunami deposits on arid siliciclastic coasts. Earth Sci Rev 126:58–73. doi: 10.1016/j.earscirev.2013.07.009 CrossRefGoogle Scholar
  35. Tanioka Y, Satake K (1996) Tsunami generation by horizontal displacement of ocean bottom. Geophys Res Lett 23(8):861. doi: 10.1029/96GL00736 CrossRefGoogle Scholar
  36. Tavera H, Buforn E, Bernal I, Antayhua Y, Vilacapoma L (2002) The Arequipa (Peru) earthquake of June 23, 2001. J Seismol 6(6):279–283. doi: 10.1023/A:1015698621075 CrossRefGoogle Scholar
  37. Tavera H, Fernández E, Bernal I, Antayhua Y, Agüero C, Rodríguez HSS, Vilcapoma L, Zamudio Y, Portugal D, Inza A, Carpio J, Ccallo F, Valdivia I (2006) The southern region of Peru earthquake of June 23rd, 2001. J Seismol 10(2):171–195. doi: 10.1007/s10950-006-9014-2 CrossRefGoogle Scholar
  38. U.S. Geological Survey (2015) Ladsat program, Landsat Missions. Accessed Feb 2015
  39. Yamazaki F, Zavala C, Nakai S, Koshimura S, Saito T, Midorikawa S, Aguilar Z, Estrada M, Bisbal A (2013) SATREPS project on enhancement of earthquake and tsunami disaster mitigation technology in Peru. J Disaster Res 9(6):916–924Google Scholar
  40. Yanagisawa H, Koshimura S, Yagi Y, Fujii Y, Shoji G, Jimenez C (2011) The tsunami vulnerability assessment in Peru using the index of potential tsunami exposure. In: 8th international conference of urban earthquake engineering, pp 1591–1595Google Scholar
  41. Zhang H, Zhang Y, Lin H (2013) Seasonal effects of impervious surface estimation in subtropical monsoon regions. Int J Digital Earth 7(9):746–760. doi: 10.1080/17538947.2013.781241 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.International Research Institute of Disaster Science (IRIDeS)Tohoku UniversitySendaiJapan
  3. 3.International Institute of Seismology and Earthquake Engineering (IISEE)TsukubaJapan
  4. 4.Department of Regional Management, Faculty of Liberal ArtsTohoku Gakuin UniversitySendaiJapan
  5. 5.Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID)Universidad Nacional de IngenieríaLimaPeru

Personalised recommendations