Aggregating Self-Organizing Maps with Topology Preservation

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 428)

Abstract

In the online version of Self-Organizing Maps, the results obtained from different instances of the algorithm can be rather different. In this paper, we explore a novel approach which aggregates several results of the SOM algorithm to increase their quality and reduce the variability of the results. This approach uses the variability of the algorithm that is due to different initialization states. We use simulations to show that our result is efficient to improve the performance of a single SOM algorithm and to decrease the variability of the final solution. Comparison with existing methods for bagging SOMs also show competitive results.

Keywords

Self-Organizing Maps Aggregation Topology preservation 

References

  1. 1.
    Kohonen, T.: Self-Organizing Maps, vol. 30, 3rd edn. Springer, Berlin (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Kohonen, T.: MATLAB Implementations and Applications of the Self-Organizing Map. Unigrafia Oy, Helsinki (2014)Google Scholar
  3. 3.
    Cottrell, M., Fort, J., Pagès, G.: Theoretical aspects of the SOM algorithm. Neurocomputing 21, 119–138 (1998)MATHCrossRefGoogle Scholar
  4. 4.
    Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–315. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  5. 5.
    Petrakieva, L., Fyfe, C.: Bagging and bumping self organising maps. Comput. Inf. Syst. J. 9, 69–77 (2003)Google Scholar
  6. 6.
    Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of self organizing maps. In: Proceedings of the 9th International Work-Conference on Artificial Neural Networks (IWANN 2007) (2007)Google Scholar
  7. 7.
    Vrusias, B., Vomvoridis, L., Gillam, L.: Distributing SOM ensemble training using grid middleware. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN 2007), pp. 2712–2717 (2007)Google Scholar
  8. 8.
    Baruque, B., Corchado, E.: Fusion Methods for Unsupervised Learning Ensembles. Studies in Computational Intelligence, vol. 322. Springer, Berlin (2011)CrossRefGoogle Scholar
  9. 9.
    Pasa, L., Costa, J.: Guerra de Medeiros, M.: Fusion of Kohonen maps ranked by cluster validity indexes. In: Polycarpou, M., de Carvalho, A., Pan, J., Woźniak, M., Quintian, H., Corchado, E. (eds.) Proceedings of the 9th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2014), vol. 8480, pp. 654–665. Salamanca, Spain, Springer International Publishing Switzerland (2014)Google Scholar
  10. 10.
    Mariette, J., Olteanu, M., Boelaert, J., Villa-Vialaneix, N.: Bagged kernel som. In: Proceedings of WSOM, Mittweida, Germany (2014) ForthcomingGoogle Scholar
  11. 11.
    Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Comput. 22(9), 2229–2284 (2010)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Georgakis, A., Li, H., Gordan, M.: An ensemble of som networks for document organization and retrieval akrr (2005). In: Proceedings of International Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2005) (2005)Google Scholar
  13. 13.
    Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralic, J., Polzlbauer, G., Rauber, A. (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA’04), pp. 67–82. Vysoke Tatry, Slovakia, Elfa Academic Press, Sliezsky dom (2004)Google Scholar
  14. 14.
    Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5), 719–720 (2008)CrossRefGoogle Scholar
  15. 15.
    Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 (2005)Google Scholar
  16. 16.
    Towell, G., Shavlik, J.: Interpretation of artificial neural networks: mapping knowledge-based neural networks into rules. Proceedings of Advances in Neural Information Processing Systems 4 (1992)Google Scholar
  17. 17.
    Niranjan, M., Fallside, F.: Neural networks and radial basis functions in classifying static speech patterns. Comput. Speech Lang. 4(3), 275–289 (1990)CrossRefGoogle Scholar
  18. 18.
    Cottrell, M., de Bodt, E., Verleisen, M.: A statistical tool to assess the reliability of self-organizing maps. In: Allinson, N., Yin, H., Allinson, J., Slack, J. (eds.) Advances in Self-Organizing Maps (Proceedings of WSOM 2001), pp. 7–14. Lincoln, UK, Springer (2001)Google Scholar
  19. 19.
    de Bodt, E., Cottrell, M., Verleisen, M.: Statistical tools to assess the reliability of self-organizing maps. Neural Netw. 15(8–9), 967–978 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.INRA, UR 0875 MIA-TCastanet Tolosan CedexFrance

Personalised recommendations