Skip to main content

Abstract

Among the diversity of methods for glucose level monitoring in human blood, invasive techniques are still the most commonly used. Blood samples, usually obtained with finger-pricking devices, are analysed through enzymatic reactions via electrochemical or photometric principles. In this paper, non-invasive methods for blood glucose monitoring are studied and compared, while also analysing optical and electronic properties of glucose. From this comparative analysis, proposals are made towards the design and characterisation of novel devices capable of monitoring blood-glucose levels through optoelectronic non-invasive procedures. Alteration of electrical parameters of cellular membrane, such as electric permittivity and conductivity as a function of blood glucose concentration, are observed and compared to the responses to optical stimuli. The investigation is developed by establishing a correlation between the effects of diffusion and dispersion of light on the concentration and dispersity of blood particles, and the response of electrical parameters under different glucose concentrations. As a result of the analysis, recommendations are made for the most suitable parameters and instrumental methodology, in terms of feasibility, easiness and precision, for non-invasive monitoring of blood glucose levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Ravariu, C. Ionescu-Tirgoviste, F. Ravariu, Glucose biofuels properties in the bloodstream, in conjunction with the beta cell electro-physiology. In International Conference on Clean Electrical Power (2009), pp. 124–127.

    Google Scholar 

  2. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Apuntes de Bioquímica, http://www.fmvz.unam.mx/fmvz/p_estudios/apuntes_bioquimica/Unidad_8.pdf

  3. K. Tonyushkina, J.H. Nichols, Glucose meters: a review of technical challenges to obtaining accurate results. J. Diabetes Sci. Technol. 3(4), 971–980 (2009)

    Article  Google Scholar 

  4. A. Soni, S.K. Jha, A paper strip based non-invasive glucose biosensor for salivary analysis. Biosens. Bioelectron. 67, 763–768 (2015)

    Article  Google Scholar 

  5. A. Thomas, A. Ramírez, A. Zehe, Non-invasive glucose monitoring: will nanotechnology make this dream come true? Nanoc. Moletrón. 12(2), 2177–2190 (2014)

    Google Scholar 

  6. Z. Zhao, Pulsed photoacoustic techniques and glucose determination in human blood and tissue, Ph.D. Dissertation, University of Oulu, Finland, (2002)

    Google Scholar 

  7. K.L. Hermayer, A.S. Loftley, S. Reddy, S.N. Narla, N.A. Epps, Y. Zhu, Challenges of inpatient blood glucose monitoring: standards, methods, and devices to measure blood glucose. Curr. Diab. Rep. 15(3), 1–10 (2015)

    Article  Google Scholar 

  8. T. Yilmaz, Y. Hao, Electrical property characterization of blood glucose for on—body sensors. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, pp. 3659–3662

    Google Scholar 

  9. E. Topsakal, T. Karacolak, E.C. Moreland. Glucose-dependent dielectric properties of blood plasma. In IEEE General Assembly and Scientific Symposium, 2011, pp. 1–4

    Google Scholar 

  10. K.A. Unnikrishna Menon, D. Hemachandran, A. Thekkeyil Kunnath, Voltage intensity based non-invasive blood glucose monitoring. In 4th ICCCNT (IEEE), 2013, pp. 1–5.

    Google Scholar 

  11. I. Harman-Boehm, A. Gal, A.M. Raykhman, E. Naidis, Y. Mayzel, Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors. J. Diabetes Sci. Technol. 4(3), 1–13 (2010)

    Article  Google Scholar 

  12. I. Harman-Boehm, A. Gal, A.M. Raykhman, J.D. Zahn, E. Naidis, Y. Mayzel, Noninvasive glucose monitoring: a novel approach. J. Diabetes Sci. Technol. 3(2), 253–260 (2009)

    Article  Google Scholar 

  13. Y. Hayashi, L. Livshits, A. Caduff, Y. Feldman, Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J. Phys. D: Appl. Phys. 36, 369–374 (2003)

    Article  Google Scholar 

  14. G. Gelao, R. Marani, V. Carriero, A. Gina Perri, Design of a dielectric spectroscopy sensor for continuous noninvasive blood glucose monitoring. Int. J. Adv. Eng. Technol. 3(2), 55–64 (2012)

    Google Scholar 

  15. R.W. Waynant, V.M. Chenault, Overview of non-invasive fluid glucose measurement using optical techniques to maintain glucose control in diabetes mellitus. Photonics Society Newsletters, http://photonicssociety.org/newsletters/apr98/overview.htm. Accessed 2 Apr 1998

  16. J.T. Bruulsema, J.E. Hayward, T.J. Farrel, M.S. Patterson, L. Heinemann, M. Berger, Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient. Opt. Lett. 22(3), 190–192 (1997)

    Article  Google Scholar 

  17. O. Amir, D. Weinstein, S. Zilberman, M. Less, D. Perl-Treves, H. Primack, A. Weinstein, E. Gabis, B. Fikhte, A. Karasik, Continuous non-invasive glucose monitoring technology based on “Occlusion Spectroscopy”. J. Diabetes Sci. Technol. 1(4), 463–469 (2007)

    Article  Google Scholar 

  18. K. Airat, J. Chen, G.W. Small, M.A. Arnold, Scattering and absorption effects in the determination of glucose in whole blood by new infrared spectroscopy. Am. Chem. Soc. 77(14), 4587–4594 (2005)

    Google Scholar 

  19. L. Mor, E. Bubis, K. Hemmes, P. Schechner, Performance of a glucose AFC. In Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems, 2004, pp. 278–281

    Google Scholar 

  20. S. Liu, E. Li, Q. Hou, Non-invasive detection system design for blood glucose based on optical rotation properties. In 3rd International Conference on Biomedical Engineering and Informatics, 2010, pp. 1532–1535

    Google Scholar 

  21. R.J. McNichols, G.L. Cote, Optical glucose sensing in biological fluids: an overview. J. Biomed. Opt. 5(1), 5–16 (2000)

    Article  Google Scholar 

  22. V. Ashok, A. Nirmalkumar, N. Jeyashanthi, A novel method for blood glucose measurement by noninvasive technique using laser. World Acad. Sci. Eng. Technol. 5(3), 484–490 (2011)

    Google Scholar 

  23. Z. Bagheri, R. Massudi, J. Ghanavi, Noninvasive glucose measurement by fluorescence quenching of nontoxic gold nanoparticles. Opt. Laser Technol. 58, 135–138 (2014)

    Article  Google Scholar 

  24. A. Tura, A. Maran, G. Pacini, Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 77, 16–40 (2007)

    Article  Google Scholar 

  25. C.F. Amaral, M. Brischwein, B. Wolf, Multiparameter techniques for non-invasive measurement of blood glucose. Sens. Actuators B 140, 12–16 (2009)

    Article  Google Scholar 

  26. D. Freger, A. Gal, A.M. Raykhman, Method of monitoring glucose level. Ashkelon, Israel Patentee U.S. 6954662 B2, 11 Oct 2005

    Google Scholar 

  27. M. Toubal, M. Asmani, E. Radziszewski, B. Nongaillard, Acoustic measurement of compressibility and thermal expansion coefficient of erythrocytes. Phys. Med. Biol. 44(5), 1277–1287 (1999)

    Article  Google Scholar 

  28. Y. Muramatsu, A. Tagawa, T. Kasai, Thermal conductivity of several liquid foods. Food Sci. Technol. Res. 11(3), 288–294 (2005)

    Article  Google Scholar 

  29. G.H. Thomas, R.M. Watson, Method and apparatus for non-invasive monitoring of blood glucose, U.S. Patent 5119819 A, 9 Jun 1992

    Google Scholar 

  30. T. Vo-Dinh, Biomedical Photonics Handbook: Biometical Diagnostics (CRC Press, Boca Raton, FL, 2014)

    Google Scholar 

  31. S.F. Clarke, J.R. Foster, A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 69(2), 83–93 (2012)

    Google Scholar 

  32. E. Menéndez Torre, Self-monitoring of blood glucose in diabetes. Historical perspective and technologic evolution. Av. Diabetol. 26(1), 1–4 (2010)

    Google Scholar 

  33. D.B. Wagner, Method for monitoring glucose. East Rutherford, New Jersey, United States Patentee U.S. 5001054 A, 19 Mar 1991

    Google Scholar 

  34. T.W. King, G.L. Cote, R.J. McNichols, M.J. Goetz Jr., Multispectral polarimetric glucose detection using a single Pockels cell. Opt. Eng. 33 (8), 2746–2753 (1994)

    Article  Google Scholar 

  35. M. Stavridi, W.S. Grundfest. Glucose fluorescence monitor and method. United States Patentee U.S. 5341805 A, 30 Aug 1994

    Google Scholar 

  36. B.B. Sterling, J.R. Braig, D.S. Goldberger, C.E. Kramer., A.M. Shulenberger, R. Trebino, R. King, R.O. Herrera, Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body. United States of America Patentee U.S. 6025597 A, 15 Feb 2000

    Google Scholar 

  37. J.L. Lambert, M.S. Borchert, Non-invasive glucose monitor. California Patentee U.S. 6181957 B1, 30 Jan 2001

    Google Scholar 

  38. M.J. Schurman, W.J. Shakespeare, Method and apparatus for monitoring glucose levels in a biological tissue. USA Patentee U.S. 7254429 B2, 7 Aug 2007

    Google Scholar 

  39. M. Ahmad, M.A. Kamboh, A. Khan, Non-invasive blood glucose monitoring using near-infrared spectroscopy, EDN Networks (2013), pp. 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús García-Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

García-Guzmán, J., González-Viveros, N., Cerecedo-Núñez, H.H. (2017). Comparative Analysis of Optoelectronic Properties of Glucose for Non-invasive Monitoring. In: Martínez-García, A., Furlong, C., Barrientos, B., Pryputniewicz, R. (eds) Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-28513-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28513-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28511-5

  • Online ISBN: 978-3-319-28513-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics