Skip to main content

A States of Matter Algorithm for Global Optimization

  • Chapter
  • First Online:
Advances of Evolutionary Computation: Methods and Operators

Abstract

The ability of an Evolutionary Algorithm (EA) to find a global optimal solution depends on its capacity to find a good relation between exploitation of the found-so-far elements and exploration of the search space. Inspired by natural phenomena, researchers have developed many successful evolutionary algorithms. In their original versions, such approaches define operators that mimic the way in which nature solves complex problems overlooking the exploration–exploitation balance. In this chapter, a novel nature-inspired algorithm called the States of Matter Search (SMS) is introduced. The evolutionary process is divided into three phases which emulate the three states of matter: gas, liquid and solid. In each state, the evolving elements, which are modeled as molecules, exhibit different movement capacities. As a result, the approach can substantially improve the balance between exploration–exploitation, yet preserving the good search capabilities of an EA. To illustrate the proficiency and robustness of the presented algorithm, it was compared with other well-known evolutionary methods including recent variants that incorporate diversity preservation schemas. Experimental results and examples show that the presented method achieves a good performance over its counterparts as a consequence of its better exploration–exploitation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardalos Panos, M., Romeijn Edwin, H., Toy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

    Article  Google Scholar 

  3. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl. Math. Comput. 185(1), 382–387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)

    Article  MATH  Google Scholar 

  5. Lera, D., Sergeyev, Y.: Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, Chichester, UK (1966)

    MATH  Google Scholar 

  7. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI (1975)

    Google Scholar 

  8. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)

    Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)

    MATH  Google Scholar 

  11. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: Part I—basic theory and applications. Technical report, TR-DCA 01/99. December 1999

    Google Scholar 

  12. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimisation over continuous spaces. Tech. Rep. TR-95-012. ICSI, Berkeley, Calif (1995)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

    Article  Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

    Google Scholar 

  17. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano (1991)

    Google Scholar 

  18. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)

    Article  MATH  Google Scholar 

  19. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

    Article  Google Scholar 

  20. Liu, S.-H., Mernik, M., Bryant, B.: To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int. J. Knowl. Based Intell. Eng. Syst. 13(3), 185–206 (2009)

    Article  Google Scholar 

  21. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(3), 126–142 (2005)

    Article  Google Scholar 

  22. Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl. Soft Comput. 10(2), 409–422 (2010)

    Article  Google Scholar 

  23. Gong, W., Cai, Z., Jiang, L.: Enhancing the performance of differential evolution using orthogonal design method. Appl. Math. Comput. 206(1), 56–69 (2008)

    Article  MATH  Google Scholar 

  24. Joan-Arinyo, R., Luzon, M.V., Yeguas, E.: Parameter tuning of pbil and chc evolutionary algorithms applied to solve the root identification problem. Appl. Soft Comput. 11(1), 754–767 (2011)

    Article  Google Scholar 

  25. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  26. Sadegh, M., Reza, M., Palhang, M.: LADPSO: using fuzzy logic to conduct PSO algorithm. Appl. Intell. 37(2), 290–304 (1012)

    Google Scholar 

  27. Yadav, P., Kumar, R., Panda, S.K., Chang, C.S.: An intelligent tuned harmony search algorithm for optimization. Inf. Sci. 196(1), 47–72 (2012)

    Article  Google Scholar 

  28. Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: A modified gravitational search algorithm for slope stability analysis. Eng. Appl. Artif. Intell. 25(8), 1589–1597 (2012)

    Article  Google Scholar 

  29. Koumousis, V., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  30. Han, Ming-Feng, Liao, Shih-Hui, Chang, Jyh-Yeong, Lin, Chin-Teng: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. (2012). doi:10.1007/s10489-012-0393-5

    Google Scholar 

  31. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. Appl. Intell. 29(3), 228–247 (2008)

    Article  Google Scholar 

  32. Li, Y., Zeng, X.: Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl. Intell. 32(3), 292–310 (2010)

    Article  Google Scholar 

  33. Paenke, I., Jin, Y., Branke, J.: Balancing population- and individual-level adaptation in changing environments. Adapt. Behav. 17(2), 153–174 (2009)

    Article  Google Scholar 

  34. Araujo, L., Merelo, J.J.: Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans. Evol. Comput. 15(4), 456–468 (2011)

    Article  Google Scholar 

  35. Gao, H., Xu, W.: Particle swarm algorithm with hybrid mutation strategy. Appl. Soft Comput. 11(8), 5129–5142 (2011)

    Article  Google Scholar 

  36. Jia, D., Zheng, G., Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)

    Google Scholar 

  37. Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)

    Article  Google Scholar 

  38. Ostadmohammadi, B., Mirzabeygi, P., Panahi, M.: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm and Evolutionary Computation (in press)

    Google Scholar 

  39. Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)

    Article  Google Scholar 

  40. Črepineš, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 1(1), 1–33 (2011)

    Google Scholar 

  41. Ceruti, G., Rubin, H.: Infodynamics: analogical analysis of states of matter and information. Inf. Sci. 177, 969–987 (2007)

    Article  Google Scholar 

  42. Chowdhury, D., Stauffer, D.: Principles of Equilibrium Statistical Mechanics, 1 edn. Wiley-VCH, 2000

    Google Scholar 

  43. Betts, D.S., Roy, E.: Turner Introductory Statistical Mechanics, 1 edn. Addison Wesley, 1992

    Google Scholar 

  44. Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 5th edn. McGraw-Hill, 2005

    Google Scholar 

  45. Bueche, F., Hecht, E.: Schaum’s Outline of College Physics, 11th edn. McGraw-Hill, 2012

    Google Scholar 

  46. Piotrowski, A.P., Napiorkowski, J.J., Kiczko, A.: Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur. J. Oper. Res. 216(1), 33–46 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Cocco Mariani, V., Justi Luvizotto, L.G., Alessandro Guerra, F., dos Santos Coelho, L.: A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl. Math. Comput. 217(12), 5822–5829 (2011)

    Google Scholar 

  48. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  49. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Google Scholar 

  50. Tsoulos, I.G.: Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 203(2), 598–607 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  Google Scholar 

  52. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special session on real parameter optimization. J. Heurist. (2008). doi:10.1007/s10732-008-9080-4

    Google Scholar 

  53. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.: A general framework for statistical performance comparison of evolutionary computation algorithms. Inf. Sci. 178, 2870–2879 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuevas, E., Díaz Cortés, M.A., Oliva Navarro, D.A. (2016). A States of Matter Algorithm for Global Optimization. In: Advances of Evolutionary Computation: Methods and Operators. Studies in Computational Intelligence, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-319-28503-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28503-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28502-3

  • Online ISBN: 978-3-319-28503-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics