Abstract
An end-to-end facial recognition system performance depends on a variety of factors. The optical system, environment, illumination, target, and recognition algorithm can all affect its accuracy. Typically, only the facial recognition algorithm has been considered when evaluating performance. The remaining environmental and system components have not been considered in the design of facial recognition imaging systems. However, in scenarios relevant to the military and homeland security, the effects of weather and range can severely degrade performance and it is necessary to understand the conditions where this happens. This work introduces a methodology to explore the sensitivities of a facial recognition imaging system to blur, noise, and turbulence effects. Using a government-owned and an open source facial recognition algorithm, system performance is evaluated under different optical blurs , sensor noises , and turbulence conditions . The ramifications of these results on the design of long-range facial recognition systems are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
U.S. Army Training and Doctrine Command: The U.S. Army Operating Concept: Win in a Complex World. (TRADOC Pamphlet 525-3-1), http://www.tradoc.army.mil/tpubs/pams/TP525-3-1.pdf. Last accessed 31 Mar 2015
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)
Turk, M., Pentland, A.P.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1996)
Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 1724–1733 (1997)
Wiskott, L., Fellous, J.-M., Krüger, N., Malsburg, C.V.D.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19, 775–779 (1997)
Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recogn. 25(1), 65–77 (1992)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)
Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Phillips, P.J., Rauss, P.J., Der, S.Z.: FERET (facial recognition technology) recognition algorithm development and test results. ARL Technical Report 995 (1996)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)
Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Univ. Mass. Technical Report 07-49 (2007)
The AR Face Database: Ohio State Univ., http://www2.ece.ohiostate.edu/~aleix/ARdatabase.html. Last accessed 26 May 2015
Grgic, M., Delac, K., Grgic, S.: SCface—surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2009)
Phillips, P.J., Grother, P., Micheals, R., Blackburn, D.M., Tabassi, E., Bone, M.: Face recognition vendor test 2002. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, p. 44 (2003)
Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. NIST Interagency Report 7408 (2007)
Grother, P.J., Quinn, G.W., Phillips, P.J.: Report on the evaluation of 2D still-image face recognition algorithms. NIST Interagency Report 7709 (2011)
Phillips, P.J., et al.: An introduction to the good, the bad, & the ugly face recognition challenge problem. NIST Interagency Report 7758 (2011)
Quinn, G.W., Grother, P.J.: Performance of face recognition algorithms on compressed images. NIST Interagency Report 7830 (2011)
Matas, J., Hamouz, M., Jonsson, K., Kittler, J., Li, Y., Kotropoulos, C., Tefas, A., Pitas, I., Tan, T., Yan, H., Smeraldi, E., Bigun, J., Capdevielle, N., Gerstner, W., Ben-yacoub, S., Abdeljaoued, Y., Mayoraz, E.: Comparison of face verification results on the XM2VTS database. In: Proceedings of the 15th ICPR, pp. 858–863 (2000)
Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010)
Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M.: An introduction to evaluating biometric systems. Computer 33(2), 56–63 (2000)
Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)
Wheeler, F.W., Liu, X., Tu, P.H.: Multi-frame super-resolution for face recognition. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2007)
Huang, H., He, H., Fan, X., Zhang, J.: Super-resolution of human face image using canonical correlation analysis. Pattern Recogn. 43(7), 2532–2543 (2010)
Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Process. 12(5), 597–606 (2003)
Heflin, B., Parks, B., Scheirer, W., Boult, T.: Single image deblurring for a real-time face recognition system. In: 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1185–1192 (2010)
Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference to improve recognition of blurred faces. Computer Vision and Pattern Recognition, pp. 1115–1122 (2009)
Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference using subspace analysis for recognition of blurred faces. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 838–845 (2011)
Reda, A., Aoued, B.: Artificial neural network-based face recognition. In: First International Symposium on Control, Communications and Signal Processing, pp. 439–442 (2004)
Uglov, J., Schetinin, V., Maple, C.: Comparing robustness of pairwise and multiclass neural-network systems for face recognition. arXiv:0704.3515 (2007)
Oravec, M., Lehocki, F., Mazanec, J., Pavlovicova, J., Eiben, P.: Face Recognition in Ideal and Noisy Conditions Using Support Vector Machines, PCA and LDA. INTECH Open Access Publisher, Rijeka (2010)
Bharadwaj, S., Bhatt, H., Vatsa, M., Singh, R., Noore, A.: Quality assessment based denoising to improve face recognition performance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 140–145 (2011)
Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural networks,” arXiv:1502.00873 (2015)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)
Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: touching the limit of lfw benchmark or not?. arXiv:1501.04690 (2015)
Fried, D.L.: Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 56(10), 1372–1379 (1966)
Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media. SPIE Press, Bellingham (2005)
Espinola, R.L., Cha, J., Leonard, K.: Novel methodologies for the measurement of atmospheric turbulence effects. In: Proceeding of SPIE, 7662 (2010)
Leonard, K.R., Howe, J., Oxford, D.E.: Simulation of atmospheric turbulence effects and mitigation algorithms on stand-off automatic facial recognition. In: Proceedings SPIE, 8546 (2012)
Subasic, M., Loncaric, S., Petkovic, T., Bogunovic, H., Krivec, V.: Face image validation system. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, pp. 30–33 (2005)
Hsu, R.-L.V., Shah, J., Martin, B.: Quality assessment of facial images. In: Biometric Consortium Conference, 2006 Biometrics Symposium, pp. 1–6 (2006)
Grother, P., Tabassi, E.: Performance of biometric quality measures. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 531–543 (2007)
Abaza, A., Harrison, M.A., Bourlai, T.: Quality metrics for practical face recognition. In: 21st International Conference on Pattern Recognition, pp. 3103–3107 (2012)
Abaza, A., Harrison, M.A., Bourlai, T., Ross, A.: Design and evaluation of photometric image quality measures for effective face recognition. IET Biometrics 3(4), 314–324 (2014)
Beveridge, J.R., Phillips, P.J., Givens, G.H., Draper, B.A., Teli, M.N., Bolme, D.S.: When high-quality face images match poorly. In: IEEE International Conference on Automatic Face Gesture Recognition and Workshops, pp. 572–578 (2011)
Bolme, D., Beveridge, R., Teixeira, M., Draper, B.: The CSU face identification evaluation system: its purpose, features and structure. In: International Conference on Vision Systems (2003)
Colorado State University: http://www.cs.colostate.edu/evalfacerec/index10.php, Last accessed 31 Mar 2015
Howell, C., Choi, H.-S., Reynolds, J.P.: Face acquisition camera design using the NV-IPM image generation tool. In: Proceedings of SPIE 9452 (2015)
Leibowitz, H.W., Ambient illuminance during twilight and from the moon. In: Proceedings on Night Vision Current Research and Future Directions, pp. 20–21 (1987)
Repasi, E., Weiss, R.: Computer simulation of image degradations by atmospheric turbulence for horizontal views. Proc. SPIE p. 8014 (2011)
Leoanrd, K.R., Espinola, R.L.: Validation of atmospheric turbulence simulations of extended scenes. In: Proc. SPIE 9071 (2014)
Teaney, B., Reynolds, J.: Next generation imager performance model. In: Proc. SPIE 7662 (2010)
Repasi, E.: Image catalogue of video sequences recorded by FGAN-FOM during the NATO RTG40 field trial, distributed to group members in Spring (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland (outside the USA)
About this chapter
Cite this chapter
Leonard, K.R. (2016). Assessment of Facial Recognition System Performance in Realistic Operating Environments. In: Bourlai, T. (eds) Face Recognition Across the Imaging Spectrum. Springer, Cham. https://doi.org/10.1007/978-3-319-28501-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-28501-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28499-6
Online ISBN: 978-3-319-28501-6
eBook Packages: Computer ScienceComputer Science (R0)