Skip to main content

Assessment of Facial Recognition System Performance in Realistic Operating Environments

  • Chapter
  • First Online:
Face Recognition Across the Imaging Spectrum
  • 2182 Accesses

Abstract

An end-to-end facial recognition system performance depends on a variety of factors. The optical system, environment, illumination, target, and recognition algorithm can all affect its accuracy. Typically, only the facial recognition algorithm has been considered when evaluating performance. The remaining environmental and system components have not been considered in the design of facial recognition imaging systems. However, in scenarios relevant to the military and homeland security, the effects of weather and range can severely degrade performance and it is necessary to understand the conditions where this happens. This work introduces a methodology to explore the sensitivities of a facial recognition imaging system to blur, noise, and turbulence effects. Using a government-owned and an open source facial recognition algorithm, system performance is evaluated under different optical blurs , sensor noises , and turbulence conditions . The ramifications of these results on the design of long-range facial recognition systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. Army Training and Doctrine Command: The U.S. Army Operating Concept: Win in a Complex World. (TRADOC Pamphlet 525-3-1), http://www.tradoc.army.mil/tpubs/pams/TP525-3-1.pdf. Last accessed 31 Mar 2015

  2. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

  3. Turk, M., Pentland, A.P.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1996)

    Article  Google Scholar 

  5. Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 1724–1733 (1997)

    Article  Google Scholar 

  6. Wiskott, L., Fellous, J.-M., Krüger, N., Malsburg, C.V.D.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19, 775–779 (1997)

    Article  Google Scholar 

  7. Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recogn. 25(1), 65–77 (1992)

    Article  Google Scholar 

  8. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  9. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–741 (1995)

    Article  Google Scholar 

  10. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  11. Phillips, P.J., Rauss, P.J., Der, S.Z.: FERET (facial recognition technology) recognition algorithm development and test results. ARL Technical Report 995 (1996)

    Google Scholar 

  12. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Google Scholar 

  13. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)

    Google Scholar 

  14. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)

    Article  Google Scholar 

  15. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Univ. Mass. Technical Report 07-49 (2007)

    Google Scholar 

  16. The AR Face Database: Ohio State Univ., http://www2.ece.ohiostate.edu/~aleix/ARdatabase.html. Last accessed 26 May 2015

  17. Grgic, M., Delac, K., Grgic, S.: SCface—surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2009)

    Article  Google Scholar 

  18. Phillips, P.J., Grother, P., Micheals, R., Blackburn, D.M., Tabassi, E., Bone, M.: Face recognition vendor test 2002. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, p. 44 (2003)

    Google Scholar 

  19. Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. NIST Interagency Report 7408 (2007)

    Google Scholar 

  20. Grother, P.J., Quinn, G.W., Phillips, P.J.: Report on the evaluation of 2D still-image face recognition algorithms. NIST Interagency Report 7709 (2011)

    Google Scholar 

  21. Phillips, P.J., et al.: An introduction to the good, the bad, & the ugly face recognition challenge problem. NIST Interagency Report 7758 (2011)

    Google Scholar 

  22. Quinn, G.W., Grother, P.J.: Performance of face recognition algorithms on compressed images. NIST Interagency Report 7830 (2011)

    Google Scholar 

  23. Matas, J., Hamouz, M., Jonsson, K., Kittler, J., Li, Y., Kotropoulos, C., Tefas, A., Pitas, I., Tan, T., Yan, H., Smeraldi, E., Bigun, J., Capdevielle, N., Gerstner, W., Ben-yacoub, S., Abdeljaoued, Y., Mayoraz, E.: Comparison of face verification results on the XM2VTS database. In: Proceedings of the 15th ICPR, pp. 858–863 (2000)

    Google Scholar 

  24. Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010)

    Article  Google Scholar 

  25. Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M.: An introduction to evaluating biometric systems. Computer 33(2), 56–63 (2000)

    Article  Google Scholar 

  26. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)

    Article  Google Scholar 

  27. Wheeler, F.W., Liu, X., Tu, P.H.: Multi-frame super-resolution for face recognition. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2007)

    Google Scholar 

  28. Huang, H., He, H., Fan, X., Zhang, J.: Super-resolution of human face image using canonical correlation analysis. Pattern Recogn. 43(7), 2532–2543 (2010)

    Article  MATH  Google Scholar 

  29. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Process. 12(5), 597–606 (2003)

    Article  Google Scholar 

  30. Heflin, B., Parks, B., Scheirer, W., Boult, T.: Single image deblurring for a real-time face recognition system. In: 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1185–1192 (2010)

    Google Scholar 

  31. Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference to improve recognition of blurred faces. Computer Vision and Pattern Recognition, pp. 1115–1122 (2009)

    Google Scholar 

  32. Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial deblur inference using subspace analysis for recognition of blurred faces. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 838–845 (2011)

    Article  Google Scholar 

  33. Reda, A., Aoued, B.: Artificial neural network-based face recognition. In: First International Symposium on Control, Communications and Signal Processing, pp. 439–442 (2004)

    Google Scholar 

  34. Uglov, J., Schetinin, V., Maple, C.: Comparing robustness of pairwise and multiclass neural-network systems for face recognition. arXiv:0704.3515 (2007)

  35. Oravec, M., Lehocki, F., Mazanec, J., Pavlovicova, J., Eiben, P.: Face Recognition in Ideal and Noisy Conditions Using Support Vector Machines, PCA and LDA. INTECH Open Access Publisher, Rijeka (2010)

    Book  Google Scholar 

  36. Bharadwaj, S., Bhatt, H., Vatsa, M., Singh, R., Noore, A.: Quality assessment based denoising to improve face recognition performance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 140–145 (2011)

    Google Scholar 

  37. Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural networks,” arXiv:1502.00873 (2015)

  38. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  39. Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: touching the limit of lfw benchmark or not?. arXiv:1501.04690 (2015)

  40. Fried, D.L.: Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 56(10), 1372–1379 (1966)

    Article  Google Scholar 

  41. Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media. SPIE Press, Bellingham (2005)

    Book  Google Scholar 

  42. Espinola, R.L., Cha, J., Leonard, K.: Novel methodologies for the measurement of atmospheric turbulence effects. In: Proceeding of SPIE, 7662 (2010)

    Google Scholar 

  43. Leonard, K.R., Howe, J., Oxford, D.E.: Simulation of atmospheric turbulence effects and mitigation algorithms on stand-off automatic facial recognition. In: Proceedings SPIE, 8546 (2012)

    Google Scholar 

  44. Subasic, M., Loncaric, S., Petkovic, T., Bogunovic, H., Krivec, V.: Face image validation system. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, pp. 30–33 (2005)

    Google Scholar 

  45. Hsu, R.-L.V., Shah, J., Martin, B.: Quality assessment of facial images. In: Biometric Consortium Conference, 2006 Biometrics Symposium, pp. 1–6 (2006)

    Google Scholar 

  46. Grother, P., Tabassi, E.: Performance of biometric quality measures. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 531–543 (2007)

    Article  Google Scholar 

  47. Abaza, A., Harrison, M.A., Bourlai, T.: Quality metrics for practical face recognition. In: 21st International Conference on Pattern Recognition, pp. 3103–3107 (2012)

    Google Scholar 

  48. Abaza, A., Harrison, M.A., Bourlai, T., Ross, A.: Design and evaluation of photometric image quality measures for effective face recognition. IET Biometrics 3(4), 314–324 (2014)

    Article  Google Scholar 

  49. Beveridge, J.R., Phillips, P.J., Givens, G.H., Draper, B.A., Teli, M.N., Bolme, D.S.: When high-quality face images match poorly. In: IEEE International Conference on Automatic Face Gesture Recognition and Workshops, pp. 572–578 (2011)

    Google Scholar 

  50. Bolme, D., Beveridge, R., Teixeira, M., Draper, B.: The CSU face identification evaluation system: its purpose, features and structure. In: International Conference on Vision Systems (2003)

    Google Scholar 

  51. Colorado State University: http://www.cs.colostate.edu/evalfacerec/index10.php, Last accessed 31 Mar 2015

  52. Howell, C., Choi, H.-S., Reynolds, J.P.: Face acquisition camera design using the NV-IPM image generation tool. In: Proceedings of SPIE 9452 (2015)

    Google Scholar 

  53. Leibowitz, H.W., Ambient illuminance during twilight and from the moon. In: Proceedings on Night Vision Current Research and Future Directions, pp. 20–21 (1987)

    Google Scholar 

  54. Repasi, E., Weiss, R.: Computer simulation of image degradations by atmospheric turbulence for horizontal views. Proc. SPIE p. 8014 (2011)

    Google Scholar 

  55. Leoanrd, K.R., Espinola, R.L.: Validation of atmospheric turbulence simulations of extended scenes. In: Proc. SPIE 9071 (2014)

    Google Scholar 

  56. Teaney, B., Reynolds, J.: Next generation imager performance model. In: Proc. SPIE 7662 (2010)

    Google Scholar 

  57. Repasi, E.: Image catalogue of video sequences recorded by FGAN-FOM during the NATO RTG40 field trial, distributed to group members in Spring (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Leonard, K.R. (2016). Assessment of Facial Recognition System Performance in Realistic Operating Environments. In: Bourlai, T. (eds) Face Recognition Across the Imaging Spectrum. Springer, Cham. https://doi.org/10.1007/978-3-319-28501-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28501-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28499-6

  • Online ISBN: 978-3-319-28501-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics