Abstract
This chapter provides a summary of local operators recently proposed for heterogeneous face recognition . It also analyzes performance of each individual operator and demonstrates performance of composite operators. Basic local operators include local binary patterns (LBP), generalized local binary patterns (GLBPs), Weber local descriptors (WLDs), Gabor filters, and histograms of oriented gradients (HOGs). They are directly applied to normalized face images. The composite operators include Gabor filters followed by LBP, Gabor filters followed by WLD, Gabor filters followed by GLBP, Gabor filters followed by LBP, GLBP and WLD, Gabor ordinal measures (GOM), and composite multi-lobe descriptors (CMLD). When applying a composite operator to face images, images are first normalized and processed with a bank of Gabor filters and then local operators or combinations of local operators are applied to the outputs of Gabor filters. After a face image is encoded using the local operators, the outputs of local operators are converted to a histogram representation and then concatenated, resulting in a very long feature vector. No effective dimensionality reduction method or feature selection method has been found to reduce the size of the feature vector. Each component in the feature vector appears to contribute a small amount of information needed to generate a high fidelity matching score. A matching score is generated by means of Kullback-Leibler distance between two feature vectors. The cross-matching performance of heterogeneous face images is demonstrated on two datasets composed of active infrared and visible light face images. Both short and long standoff distances are considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Proceedings of European Conference on Comuputer Vision (ECCV), pp. 469–481 (2004)
Akhloufi, M., Bendada, A.H.: Multispectral infrared face recognition: a comparative study. In: Proceedings of Quantitative InfraRed Thermography (2010)
Bartlet, M.S., Sejnowski, T.J.: Independent components of face images: a representation for face recognition. In: Proceedings of 4th Annual Journal Symposium Neural Computation (1997)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13(6), 14501464 (2002)
Bourlai, T., Kalka, N., Ross, A., Cukic, B., Hornak, L.: Cross-spectral face verification in the short wave infrared (SWIR) band. In: Proceedings of International Conference on Patterns Recognition, pp. 1343–1347 (2010)
Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P., Bazakos, M.: Physiology-based face recognition in the thermal infrared spectrum. IEEE Trans. Pattern Anal. Machine Intell. 29(4), 613–626 (2007)
Cao, Z., Schmid, N.A.: Recognition performance of cross-spectral periocular biometrics and partial face at short and long standoff distance. Open Trans. Info. Process. 1(2), 20–32
Cao, Z., Schmid, N.A.: Matching heterogeneous periocular regions: short and long standoff distances. In: Proceedings of the IEEE International Conference on Image Processing, pp. 4967–4971 (2014)
Cao, Z., Schmid, N.A.: Composite multi-lobe descriptor for cross-spectral face recognition: matching active ir to visible light images. In: Proc. SPIE. 9476, pp. 94,760T–94,760T–13 (2015)
Cao, Z., Schmid, N.A.: Fusion of operators for heterogeneous periocular recognition at varying ranges. Pattern Recogn. Lett. doi: 10.1016/j.patrec.2015.10.018. http://www.sciencedirect.com/science/article/pii/S0167865515003694. (2015)
Chai, Z., Sun, Z., Mendez-Vazquez, H., He, R., Tan, T.: Gabor ordinal measures for face recognition. IEEE Trans. Info. Forensics Secur. 9(1), 14–26 (2014)
Chen, J., Shan, S., He, C., Zhao, G., Pietikeinen, M., Chen, X., Gao, W.: Wld: A robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Int. 32(9), 1705–1720 (2010)
Chen, X., Flynn, P., Bowyer, K.: PCA-based face recognition in infrared imagery: Baseline and comparative studies. In: Proceedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 127–134 (2003)
Chen, X., Flynn, P.J., Bowyer, K.W.: IR and visible light face recognition. Comput. Vis. Image Understand. 99(3), 332–358 (2005)
Cognitec: Facevacs software developer kit cognitec systems. (Online) http://www.cognitec-systems.de. Accessed 04 Jan 2015
Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3), 287–314 (1994)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 11601169 (1985)
Daugman, J.G.: Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Pattern Anal. Machine Intell. 36(7), 1169–1179 (1988)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)
Goodrich: Surveillance using SWIR night vision cameras. (online) http://www.sensorsinc.com/facilitysecurity.html. Accessed 01 Feb , 2015
Guo, Y., Xu, Z.: Local Gabor phase difference pattern for face recognition. In: Proceedings of International Conference on Pattern Recognition, pp. 1–4 (2008)
Hansen, M.P., Malchow, D.S.: Overview of SWIR detectors, cameras, and applications. In: Proceedings of SPIE: Thermosense XXX, pp. 69, 390I–69, 390I–11 (2008)
Heikkil, M., Pietikinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)
Hotelling, H.: Relations between two sets of variates. Biometrika 28(3), 321–377 (1936)
Jain, A.K., Ratha, N.K., Lakshmanan, S.: Object detection using Gabor filters. Pattern Recogn. 30(2), 295309 (1997)
Jutten, C., Herault, J.: Blind separation of sources i. an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 110 (1991)
Kirschner, J.: SWIR for target detection, recognition, and identification. (online) http://www.photonicsonline.com/doc.mvc/SWIR-For-Target-Detection-Recognition-And-0002 (2011). Accessed 04 Jan 2015
Klare, B., Jain, A.K.: Heterogeneous face recognition: matching NIR to visible light images. In: Proceedings of International Conference on Pattern Recognition, pp. 1513–1516 (2010)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Lee, T.S.: Image representation using 2d Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959971 (1996)
Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination invariant face recognition using near-infrared images. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 627–639 (2007)
Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)
Marelja, S.: Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. 70(11), 12971300 (1980)
Martin, R.B., Kafka, K.M., Lemoff, B.E.: Active-SWIR signatures for long-range night/day human detection and identification. In: Proceedings of the SPIE Symposium on DSS, pp. 209–218 (2013)
Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. Pattern Recognition 25(12), 14791494 (1992)
Melzera, T., Reitera, M., Bisch, H.: Appearance models based on kernel canonical correlation analysis. Pattern Recogn. 36(9), 1961–1971 (2003)
Nicolo, F.: Homogeneous and heterogeneous face recognition: enhancing, encoding and matching for practical applications. Ph.D. thesis, West Virginia University (2012)
Nicolo, F., Schmid, N.A.: A method for robust multispectral face recognition. In: Proceedings of the International Conference on Image Analysis and Recognition, pp. 180–190 (2011)
Nicolo, F., Schmid, N.A.: Long range cross-spectral face recognition: Matching SWIR against visible light images. IEEE Trans. Inf. Forensics Secur. 7(6), 1717–1726 (2012)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Inf. Forensics Secur. 24(7), 971–987 (2002)
Ojala, T., Pietikinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of IAPR International Conference on Pattern Recognition, pp. 582–556 (1994)
Ross, H.E., Murray, D.J.: E. H. Weber on the Tactile Senses, 2nd edn. Erlbaum (UK) Taylor and Francis (1996)
Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)
Socolinsky, D., Wolff, L., Neuheisel, J., Eveland, C.: Illumination invariant face recognition using thermal infrared imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 527–534 (2001)
Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. J. Cogn. Neurosci. 13(1), 71–86 (1991)
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 511– 518 (2001)
Wang, L., He, D.C.: Texture classification using texture spectrum. IEEE Trans. Pattern Anal. Mach. Int. 23(8), 905–910 (1990)
WVHTCF: Tactical imager for night/day extended-range surveillance. (online) http://www.wvhtf.org/programs/advancedtech/ONR
Yao, Y., Abidi, B., Abidi, M.: Digital imaging with extreme zoom: System design and image restoration. In: Proceedings of the IEEE International Conference on Computer Vision Systems (2006)
Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block lbp representation. In: Advances in Biometrics, Lecture Notes in Computer Science, vol. 4642, pp. 11–18. Springer, Berlin, Heidelberg (2007)
Zhao, G., Pietikinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)
Acknowledgements
The authors would like to thank Brian Lemoff of West Virginia High Technology Consortium Foundation for providing the Pre-TINDERS and TINDERS datasets employed in the described experiments in this book chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Cao, Z., Schmid, N.A., Bourlai, T. (2016). Local Operators and Measures for Heterogeneous Face Recognition. In: Bourlai, T. (eds) Face Recognition Across the Imaging Spectrum. Springer, Cham. https://doi.org/10.1007/978-3-319-28501-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-28501-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28499-6
Online ISBN: 978-3-319-28501-6
eBook Packages: Computer ScienceComputer Science (R0)