Advertisement

Multispectral Ocular Biometrics

Chapter

Abstract

This chapter discusses the use of multispectral imaging to perform bimodal ocular recognition where the eye region of the face is used for recognizing individuals. In particular, it explores the possibility of utilizing the patterns evident in the sclera, along with the iris, in order to improve the robustness of iris recognition systems . Commercial iris recognition systems typically capture frontal images of the eye in the near-infrared spectrum . However, in non-frontal images of the eye, iris recognition performance degrades considerably. As the eyeball deviates away from the camera, the iris information in the image decreases, while the scleral information increases. In this work, we demonstrate that by utilizing the texture of the sclera along with the vascular patterns evident on it, the performance of an iris recognition system can potentially be improved. The iris patterns are better observed in near-infrared spectrum, while conjunctival vasculature patterns are better discerned in the visible spectrum. Therefore, multispectral images of the eye are used to capture the details of both the iris and the sclera. The contributions of this paper include (a) the assembly of a multispectral eye image collection to study the impact of intra-class variation on sclera recognition performance , (b) the design and development of an automatic sclera, iris, and pupil segmentation algorithm, and (c) the improvement of iris recognition performance by fusing the iris and scleral patterns in non-frontal images of the eye.

Keywords

Interest Point Specular Reflection Iris Recognition Iris Boundary Iris Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Daugman, J.: How iris recognition works. IEEE Trans. Circuit Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  2. 2.
    Daugman, J.G.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36, 279–291 (2003)CrossRefGoogle Scholar
  3. 3.
    Daugman, J.G.: Biometric personal identification system based on iris analysis, United States Patent 5,291,560Google Scholar
  4. 4.
    Ross, A.: Iris recognition: the path forward. IEEE Comput. 30–35 (2010)Google Scholar
  5. 5.
    Gorodnichy, D.O., Dubrofsky, E., Hoshino, R., Khreich, W., Granger, E., Sabourin, R.: Exploring the upper bound performance limit of iris biometrics using score calibration and fusion. IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 54–61 (2011)Google Scholar
  6. 6.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)CrossRefGoogle Scholar
  7. 7.
    Kalka, N.D., Zuo, J., Schmid, N.A., Cukic, B.: Estimating and fusing quality factors for iris biometric images. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(3), 509–524 (2010)CrossRefGoogle Scholar
  8. 8.
    Watson, P.G., Young, R.D.: Scleral structure, organization and disease. A review. Exp. Eye Res. 78(3), 609–623 (2004)CrossRefGoogle Scholar
  9. 9.
    Derakhshani, R., Ross, A., Crihalmeanu, S.: A new biometric modality based on conjunctival vasculature. In: Proceedings of Artificial Neural Networks in Engineering (ANNIE) (2006)Google Scholar
  10. 10.
    Crihalmeanu, S., Ross, A.: Multispectral scleral patterns for ocular biometric recognition. Pattern Recogn. Lett. (BIOCON) 33(14), 1860–1869 (2012)CrossRefGoogle Scholar
  11. 11.
    Derakhshani, R., Ross, A.: A Texture-based neural network classifier for biometric identification using ocular surface vasculature. In: International Joint Conference on Neural Networks (IJCNN), pp. 2982–2987 (2007)Google Scholar
  12. 12.
    Crihalmeanu, S., Ross, A., Derakhshani, R.: Enhancement and registration schemes for matching conjunctival vasculature. In: Proceedings of International Conference on Biometrics, Alghero, Italy, pp. 1240–1249 (2009)Google Scholar
  13. 13.
    Crihalmeanu, S., Ross, A.: On the use of multispectral conjunctival vasculature as a soft bio-metric. IEEE Workshop on Applications of Computer Vision (WACV), pp. 204–211 (2011)Google Scholar
  14. 14.
    Tankasala, S.P., Doynov, P., Derakhshani, R., Ross, A., Crihalmeanu, S.: Biometric recognition of conjunctival vasculature using GLCM features. In: International Conference on Image Information Processing (ICIIP), pp. 1–6 (2011)Google Scholar
  15. 15.
    Zhou, Z., Du, E.Y., Thomas, N.L., Delp, E.J.: A new human identification method: sclera recognition. IEEE Trans. Syst. Man Cybern. 42(3), 571–583 (2012)CrossRefGoogle Scholar
  16. 16.
    Tankasala, S.P., Doynov, P., Derakhshani, R.: Application of pyramidal directional filter for biometric identification using conjunctival vasculature pattern. In: IEEE International Conference on Technologies for Homeland Security (HST), pp. 639–644 (2013)Google Scholar
  17. 17.
    Das, A., Pal, U., Ferrer Ballester, M.A., Blumenstein, M.: A new efficient and adaptive sclera recognition system. In: IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 1–8 (2014)Google Scholar
  18. 18.
    Derakhshani, R., Saripalle, S., Doynov, P.: Computational methods for objective assessment of conjunctival vascularity. IEEE Eng. Med. Biol. Soc. (EMBC) 1490–1493 (2012)Google Scholar
  19. 19.
    Zhou, Z., Du, E.Y, Thomas, N.L.: A comprehensive sclera image quality measure. In: 11th International Conference on Control Automation Robotics Vision (ICARCV), pp. 638–643 (2010)Google Scholar
  20. 20.
    Du, E., Thomas, N.L., Delp, E.J.: Multi-angle sclera recognition system. IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 103–108 (2011)Google Scholar
  21. 21.
    Das, A., Pal, U., Ferrer Ballester, M.A., Blumenstein, M.: Multi-angle based lively sclera bio- metrics at a distance. In: IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 22–29 (2014)Google Scholar
  22. 22.
    Gottemukkula, V., Saripalle, S.K., Tankasala, S.P., Derakhshani, R., Pasula, R., Ross, A.: Fusing iris and conjunctival vasculature: ocular biometrics in the visible spectrum. In: IEEE Conference on Technologies for Homeland Security (HST), pp. 150–155 (2012)Google Scholar
  23. 23.
    Tankasala, S.P., Doynov, P., Derakhshani, R.: Visible spectrum bi-modal ocular biometrics. In: 2nd International Conference on Communication Computing and Security, Vol. 6, pp. 564–573 (2012)Google Scholar
  24. 24.
    Zhou, Z., Du, E.Y., Thomas, N.L., Delp, E.J.: A comprehensive multimodal eye recognition. SIViP 7(4), 619–631 (2013)CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Tan, T., Jain, A.K.: Combining face and iris biometrics for identity verification. In: Fourth International Conference on Audio-and Video-based Biometric Person Authentication (AVBPA), Guildford, UK, pp. 805–813 (2003)Google Scholar
  26. 26.
    Connaughton, R., Bowyer, K.W., Flynn, P.J.: Fusion of face and iris biometrics. Handbook of Iris Recognition, pp. 219–237 (2013)Google Scholar
  27. 27.
    Johnson, P.A., Hua, F., Schuckers, S.: Camparison of quality-based fusion of face and iris biometrics. In: IEEE International Joint Conference on Biometrics Compendium (IJCB), pp. 1–5 (2011)Google Scholar
  28. 28.
    Schuckers, S.A.C., Schmid, N.A., Abhyankar, A., Dorairaj, V., Boyce, C.K., Hornak, L.A.: On techniques for angle compensation in nonideal iris recognition. IEEE Trans. Syst. Man Cybern. B Cybern. 37(5), 1176–1190 (2007)CrossRefGoogle Scholar
  29. 29.
    Gonzales, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall Inc., Upper saddle River, New Jersey 07458Google Scholar
  30. 30.
    Shah, S., Ross, A.: Iris segmentation using geodesic active contours. IEEE Trans. Inf. Forensics Secur. (TIFS) 4(4), 824–836 (2009)CrossRefGoogle Scholar
  31. 31.
    Proenca, H.: Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1502–1516 (2010)CrossRefGoogle Scholar
  32. 32.
    Boyce, C., Ross, A., Monaco, M., Hornak, L., Li, X.: Multispectral iris analysis: a preliminary study. In: Proceedings of Computer Vision and Pattern Recognition Workshop on Biometrics (CVPRW), pp. 51–60 (2006)Google Scholar
  33. 33.
    Selenick, I.W.: A new complex-directional wavelet transform and its application to image denoising. IEEE Int. Conf. Image Process. 3, 573–576 (2002)CrossRefGoogle Scholar
  34. 34.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  35. 35.
    Guarneri, I., Guarnera, M., Messina, G., Tomaselli, V.: A signature analysis based method for elliptical shape. In: Digital Photography VI, SPIE Proceedings 7537 (75270L)Google Scholar
  36. 36.
    Li, X.: Modeling intra-class variation for non-ideal iris recognition. In: In Springer LNCS 3832: International Conference on Biometrics, pp. 419–427 (2006)Google Scholar
  37. 37.
    Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 2, pp. 1124–1131. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar
  38. 38.
    Movellan, J.R.: Tutorial on Gabor filters. Technical Report, pp. 1–23 (2002)Google Scholar
  39. 39.
    Qiang, L., Shusuke, S., Kunio, D.: Selective enhancement filters for nodules, vessels, and airway walls in two or three dimensional CT scans. Med. Phys. 30(8), 2040–2051 (2003)CrossRefGoogle Scholar
  40. 40.
    Bay, H., Ess, A., Tuyleraars, T., Gool, L.V.: Speeded-up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  41. 41.
    Park, U., Jillela, R., Ross, A., Jain, A.K.: Periocular biometrics in the visible spectrum. IEEE Trans. Inf. Forensics Secur. (TIFS) 6(1), 96–106 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA

Personalised recommendations