Kanade, T.: Picture Processing System by Computer Complex and Recognition of Human Faces. PhD thesis, Kyoto University, Japan (1973)
Google Scholar
Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)
CrossRef
Google Scholar
Rowley, H.A., Baluja, S., Kanade, T.: Rotation invariant neural network-based face detection. In: CVPR, pp. 38–44, Springer (1998)
Google Scholar
Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vision 57(2), 137–154 (2002)
CrossRef
Google Scholar
Heusch, G., Rodriguez, Y., Marcel, S.: Local binary patterns as an image preprocessing for face authentication. In: FG, pp. 9–14. IEEE Computer Society (2006)
Google Scholar
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Trans. Image Process. 19(6), 1635–1650 (2010)
MathSciNet
CrossRef
Google Scholar
Sanderson, C., Paliwal, K.K.: Fast features for face authentication under illumination direction changes. Pattern Recogn. Lett. 24(14), 2409–2419 (2003)
CrossRef
Google Scholar
Günther, M., Haufe, D., Würtz, R.P.: Face recognition with disparity corrected Gabor phase differences. In ICANN, volume 7552 of LNCS, pp. 411–418. Springer, Berlin (2012)
Google Scholar
Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. Trans. Image Process. 16(1), 57–68 (2007)
MathSciNet
CrossRef
Google Scholar
Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D.L., Weng, J.: Discriminant analysis of principal components for face recognition. In: Face Recognition: From Theory to Applications, pp. 73–85. Springer, Berlin (1998)
Google Scholar
Gao, W., Cao, B., Shan, S., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. In: Technical report, Joint Research & Development Laboratory for Face Recognition, Chinese Academy of Sciences (2004)
Google Scholar
Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: ICCV, vol. 1, pp. 786–791. IEEE Computer Society (2005)
Google Scholar
Wallace, R., McLaren, M., McCool, C., Marcel, S.: Cross-pollination of normalization techniques from speaker to face authentication using Gaussian mixture models. Trans. Inf. Forensics Secur. 7(2), 553–562 (2012)
CrossRef
Google Scholar
El Shafey, L., McCool, C., Wallace, R., Marcel, S.: A scalable formulation of probabilistic linear discriminant analysis: Applied to face recognition. Trans. Pattern Anal. Mach. Intell. 35(7), 1788–1794 (2013)
CrossRef
Google Scholar
McCool, C. et al.: Bi-modal person recognition on a mobile phone: using mobile phone data. In: ICME Workshop on Hot Topics in Mobile Multimedia, pp. 635–640. IEEE Computer Society (2012)
Google Scholar
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.G.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Technical report, University of Massachusetts, Amherst (2007)
Google Scholar
Wolf, L., Hassner, T., Maoz. I.: Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011
Google Scholar
Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)
CrossRef
Google Scholar
Martínez, A.M., Benavente, R.: The AR face database. In: Technical Report 24, Computer Vision Center (1998)
Google Scholar
Anjos, A., El Shafey, L., Wallace, R., Günther, M., McCool, C., Marcel, S.: Bob: a free signal processing and machine learning toolbox for researchers. In: ACM-MM, pp. 1449–1452. ACM press (2012)
Google Scholar
Phillips, P.J., Beveridge, J.R., Draper, B.A., Givens, G., O’Toole, A.J., Bolme, D.S., Dunlop, J., Lui, Y.M., Sahibzada, H., Weimer, S.: An introduction to the good, the bad, and the ugly face recognition challenge problem. In: FG, pp. 346–353. IEEE Computer Society (2011)
Google Scholar
Lui, Y.M., Bolme, D.S., Phillips, P.J., Beveridge, J.R., Draper, B.A.: Preliminary studies on the good, the bad, and the ugly face recognition challenge problem. In: CVPR Workshops, pp. 9–16. IEEE Computer Society (2012)
Google Scholar
Günther, M., Wallace, R., Marcel, S.: An open source framework for standardized comparisons of face recognition algorithms. In: ECCV. Workshops and Demonstrations, volume 7585 of LNCS, pp. 547–556. Springer, Berlin (2012)
Google Scholar
Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: a survey. Pattern Recogn. 39, 1725–1745 (2006)
CrossRef
MATH
Google Scholar
Serrano, Á, Martín de Diego, I., Conde, C., Cabello, E.: Recent advances in face biometrics with Gabor wavelets: a review. Pattern Recogn. Lett. 31(5), 372–381 (2010)
Google Scholar
Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. Syst. Man Cybern. Part C: Appl. Rev. 41(6), 765–781 (2011)
CrossRef
Google Scholar
Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process. Syst. 5(2), 41–68 (2009)
CrossRef
Google Scholar
Shen, L., Bai, L.: A review on Gabor wavelets for face recognition. Pattern Anal. Appl. 9(2), 273–292 (2006)
MathSciNet
CrossRef
Google Scholar
Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal processing—what, why, and how. IEEE Signal Process. Mag. 26(3), 37–47 (2009)
Google Scholar
Vandewalle, P.: Code sharing is associated with research impact in image processing. Comput. Sci. Eng. 14(4), 42–47 (2012)
CrossRef
Google Scholar
Ko, K.: User’s guide to NIST biometric image software (NBIS). In: Technical report, NIST Interagency/Internal Report (NISTIR)—7392 (2007)
Google Scholar
Klontz, J.C., Klare, B.F., Klum, S., Jain, A.K., Burge, M.J.: Open source biometric recognition. In: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2013)
Google Scholar
Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: the extended M2VTS database. In: AVBPA, pp. 72–77. LNCS (1999)
Google Scholar
Martin, A., Przybocki, M., Campbell, J.P.: The NIST Speaker Recognition Evaluation Program, chapter 8. Springer, Berlin (2005)
Google Scholar
Günther, M. et al.: The 2013 face recognition evaluation in mobile environment. In: The 6th IAPR International Conference on Biometrics (2013)
Google Scholar
Khoury, E. et al.: The 2013 speaker recognition evaluation in mobile environment. In: The 6th IAPR International Conference on Biometrics (2013)
Google Scholar
Bansé, A.D., Doddington, G.R., Garcia-Romero, D., Godfrey, J.J., Greenberg, C.S., McCree, A.F.M., Przybocki, M., Reynolds, D.A.: Summary and initial results of the 2013–2014 speaker recognition i-vector machine learning challenge. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)
Google Scholar
O’Toole, A.J., Phillips, P.J., Jiang, F., Ayyad, J., Penard, N., Abdi, H.: Face recognition algorithms surpass humans matching faces over changes in illumination. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1642–1646 (2007)
CrossRef
Google Scholar
Burton, A.M., Wilson, S., Cowan, M., Bruce, V.: Face recognition in poor-quality video: Evidence from security surveillance. Psychol. Sci. 10(3), 243248 (1999)
CrossRef
Google Scholar
Grgic, M., Delac, K., Grgic, S.: SCface–surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2011)
CrossRef
Google Scholar
Beveridge, J.R., Phillips, P.J., Bolme, D.S., Draper, B.A., Givens, G.H., Lui, Y.M., Teli, M.N., Zhang, H., Scruggs, W.T., Bowyer, K.W., Flynn, P.J., Cheng, S.: The challenge of face recognition from digital point-and-shoot cameras. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2013)
Google Scholar
Taigman, Y., Yang, M., Ranzato, M.’A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Google Scholar
Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CoRR (2014)
Google Scholar
Lu, C., Tang, X.: Learning the face prior for Bayesian face recognition. In: Computer Vision ECCV 2014, volume 8692 of Lecture Notes in Computer Science. Springer International Publishing, Switzerland (2014)
Google Scholar
Moghaddam, B., Wahid, W., Pentland, A.: Beyond eigenfaces: probabilistic matching for face recognition. In: FG, pp. 30–35. IEEE Computer Society (1998)
Google Scholar
Beveridge, J.R., Zhang, H., Flynn, P.J., Lee, Y., Liong, V.E., Lu, J., de Assis Angeloni, M., de Freitas Pereira, T., Li, H., Hua G., Struc, V., Krizaj, J., Phillips, P.J.: The IJCB 2014 PaSC video face and person recognition competition. In: IEEE International Joint Conference on Biometrics IJCB, pp. 1–8 (2014)
Google Scholar
Li, H., Hua, G., Shen, X., Lin, Z., Brandt, J.: Eigen-PEP for video face recognition. In: Asian Conference on Computer Vision (ACCV) (2014)
Google Scholar
Cox, D., Pinto, N.: Beyond simple features: a large-scale feature search approach to unconstrained face recognition. In: Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on, pp. 8–15, Mar 2011
Google Scholar
Ruiz-del Solar, J., Verschae, R., Correa, M.: Recognition of faces in unconstrained environments: A comparative study. EURASIP J. Adv. Signal Process. 2009(1), 2009
Google Scholar
McCool, C., Wallace, R., McLaren, M., El Shafey, L., Marcel, S.: Session variability modeling for face authentication. IET Biometrics 2(3), 117–129 (2013)
CrossRef
Google Scholar
Khoury, E., Günther, M., El Shafey, L., Marcel, S.: On the improvements of uni-modal and bi-modal fusions of speaker and face recognition for mobile biometrics. In: Biometric Technologies in Forensic Science, Oct 2013
Google Scholar
C. Atanasoaei. Multivariate Boosting with Look-up Tables for Face Processing. PhD thesis, EPFL, 2012
Google Scholar
Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the structured output SVM. In: Csurka, G., Braz, J. (eds.) VISAPP ’12: Proceedings of the 7th International Conference on Computer Vision Theory and Applications, vol. 1, pp. 547–556. SciTePress (2012)
Google Scholar
K. Ram´ırez-Guti´errez, D. Cruz-P´erez, and H. P´erez-Meana. Face recognition and verification using histogram equalization. In ACS, WSEAS, 85–89 (2010)
Google Scholar
H.Wang, S. Z. Li, and Y.Wang. Face recognition under varying lighting conditions using self quotient image. In FG. IEEE Computer Society, 819–824, (2004)
Google Scholar
L. Wiskott, J.-M. Fellous, N. Kr¨uger, and C. van der Malsburg. Face recognition by elastic bunch graph matching. Transactions on Pattern Analysis and Machine Intelligence, 19, 775–779 (1997)
Google Scholar
M. G¨unther. Statistical Gabor Graph Based Techniques for the Detection, Recognition, Classification, and Visualization of Human Faces. PhD thesis, Institut f¨ur Neuroinformatik, Technische Universit¨at Ilmenau, Germany (2011)
Google Scholar
González Jiménez, D., Bicego, M., Tangelder, J.W.H., Schouten, B.A.M., Ambekar, O.O., Alba-Castro, J., Grosso, E., Tistarelli, M.: Distance measures for Gabor jets-based face authentication: a comparative evaluation. In: ICB, pp. 474–483. Springer (2007)
Google Scholar
W. Zhang, S. Shan, L. Qing, X. Chen, and W. Gao. Are Gabor phases really useless for face recognition? Pattern Analysis & Applications, 12, 301–307 (2009)
Google Scholar
T. Ojala, M. Pietik¨ainen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1):51–59 (1996)
Google Scholar
T. Ojala, M. Pietik¨ainen, and T. M¨aenp¨a¨a. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987 2002
Google Scholar
T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary patterns. In ECCV. Springer, 469–481 (2004)
Google Scholar
F. Cardinaux, C. Sanderson, and S. Marcel. Comparison of MLP and GMM classifiers for face verification on XM2VTS. In AVBPA, volume 2688 of LNCS, 911–920. Springer, (2003)
Google Scholar
D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 10(1-3):19–41 (2000)
Google Scholar
J.-L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. Transactions on Speech and Audio Processing, 2(2):291–298 (1994)
Google Scholar
F. Cardinaux, C. Sanderson, and S. Bengio. User authentication via adapted statistical models of face images. Transactions on Signal Processing, 54(1):361–373 (2006)
Google Scholar
R. J. Vogt and S. Sridharan. Explicit modelling of session variability for speaker verification. Computer Speech & Language, 22(1):17–38 (2008)
Google Scholar
Wallace, R., McLaren, M., McCool, C., Marcel, S.: Inter-session variability modeling and joint factor analysis for face authentication. In: IJCB, pp. 1–8. IEEE (2011)
Google Scholar
A. K. Jain, P. Flynn, and A. A. Ross. Handbook of Biometrics. Springer, 2008
Google Scholar
E. Bailly-Bailli´ere et al. The BANCA database and evaluation protocol. In AVBPA, volume 2688 of LNCS, SPIE, 625–638 (2003)
Google Scholar
G. B. Huang, V. Jain, and E. G. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV, IEEE, 1–8 (2007)
Google Scholar
M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning approaches for face identification. In ICCV, IEEE, 498–505 (2009)
Google Scholar
Khoury, E., El Shafey, L., McCool, C., Günther, M., Marcel, S.: Bi-modal biometric authentication on mobile phones in challenging conditions. In: Image and Vision Computing (2013)
Google Scholar
Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: VWhich parts of the face give out your identity? In: CVPR, pp. 641–648. IEEE Computer Society (2011)
Google Scholar
Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large- scale Chinese face database and baseline evaluations. Syst. Man Cybern. Part A Syst. Hum. 38, 149–161 (2008)
CrossRef
Google Scholar
Arashloo, S.R., Kittler, J.: Class-specific kernel fusion of multiple descriptors for face verification using multiscale binarised statistical image features. IEEE Trans. Inf. Forensics Secur. 9(12), 2100–2109 (2014)
CrossRef
Google Scholar
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: IEEE International Conference on Computer Vision (ICCV), Oct 2009
Google Scholar
Chen, D., Cao, X., Wang, L., Wen, F., Sun, J.: Bayesian face revisited: A joint formulation. In: Proceedings of the 12th European Conference on Computer Vision—Volume Part III, pp. 566–579 (2012)
Google Scholar
Khoury, E., Senac, C., Joly, P.: Face-and-clothing based people clustering in video content. In: Proceedings of the International Conference on Multimedia Information Retrieval, MIR ’10, pp. 295–304. ACM, New York, NY, USA, (2010)
Google Scholar
A. Dutta, M. Günther, L. El Shafey, S. Marcel, R. Veldhuis, and L. Spreeuwers. Impact of eye detection error on face recognition performance. IET Biometrics, 2014
Google Scholar
Auckenthaler, R., Carey, M., Lloyd-Thomas, H.: Score normalization for text-independent speaker verification systems. Digit. Signal Proc. 10(1), 42–54 (2000)
CrossRef
Google Scholar
Barr, J.R., Bowyer, K.W., Flynn, P.J., Biswas, S.: Face recognition from video: a review. Int. J. Pattern Recogn. Artif. Intell. 26(5) (2012)
Google Scholar
Müller, M.K., Tremer, M., Bodenstein, C., Würtz, R.P.: Learning invariant face recognition from examples. Neural Netw. 41:137–146 (2013)
Google Scholar