Membrane Computing Meets Temperature: A Thermoreceptor Model as Molecular Slide Rule with Evolutionary Potential
Abstract
Temperature represents an elementary environmental stimulus crucial for survival and fitness of organisms. Molecular membrane-based mechanisms for temperature sensing and behavioral response seem to be among the oldest principles of biological information processing. It is believed that some archaea – early microbes prior to bacteria and eukaryotes – developed thermoreceptors. In addition, they were able to maintain a circadian clock, a biochemical oscillatory system whose periodicity reflects a daily rhythm. Both features on their own, but especially their combination, gives raise for effective evolutionary advantage. Along with the notion of applied systems biology, we explore capabilities of resulting reaction models by exploitation of deterministic P modules and their dynamical coupling by means of simulation studies. Our findings indicate that a minimalistic circadian clock equipped with a chemical temperature sensor enables robust and practicable entrainment to an external daily temperature rhythm induced by the sun in contrast to a clock variant without thermoreceptor. Having a more adaptable circadian clock, archaea comprise better preconditions to populate larger oceanic regions from the equator towards the poles. From a modelling point of view, we incorporate the global quantity temperature and its effect on reaction velocity according to Arrhenius’ equation into the framework of deterministic P modules.
Keywords
Circadian Clock Period Length Phase Lock Loop Transient Receptor Potential Channel Temperature CompensationReferences
- 1.Barbagallo, B., Garrity, P.A.: Temperature sensation in Drosophila. Curr. Opin. Neurobiol. 34, 8–13 (2015)CrossRefGoogle Scholar
- 2.Belousov, B.P.: A periodic reaction and its mechanism. Compilation Abstr. Radiat. Med. 145, 147 (1959)Google Scholar
- 3.Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2008)MATHCrossRefGoogle Scholar
- 4.Dvornyk, V., Vinogradova, O., Nevo, E.: Origin and evolution of circadian clock genes in prokaryotes. PNAS 100(5), 2495–2500 (2003)CrossRefGoogle Scholar
- 5.Gibson, D.G., Glass, J.I., Lartigue, C., et al.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010)CrossRefGoogle Scholar
- 6.Gierloff-Emden, H.-G.: Lehrbuch der allgemeinen Geographie. deGruyter, New York (1979)Google Scholar
- 7.Glaser, R.: Biophysics. An Introduction. Springer, Heidelberg (2012)Google Scholar
- 8.Goodwin, B.C.: Oscillatory behaviour in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)CrossRefGoogle Scholar
- 9.Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, 47–52 (1999)CrossRefGoogle Scholar
- 10.Heiland, I., Bodenstein, C., Hinze, T., Weisheit, O., Ebenhöh, O., Mittag, M., Schuster, S.: Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii. J. Biol. Phys. 38, 449–464 (2012)CrossRefGoogle Scholar
- 11.Hinze, T., Bodenstein, C., Schau, B., Heiland, I., Schuster, S.: Chemical analog computers for clock frequency control based on P modules. In: Gheorghe, M., Paun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 182–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 12.Hinze, T., Schell, B., Schumann, M., Bodenstein, C.: Maintenance of chronobiological information by P system mediated assembly of control units for oscillatory waveforms and frequency. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 208–227. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 13.Hinze, T.: Unraveling oscillating structures by means of P systems. In: Gheorghe, M., et al. (eds.) Research Frontiers of Membrane Computing: Open Problems and Research Topics. Int. J. Found. Comput. Sci. 24(5), 547–623 (2013)Google Scholar
- 14.Hinze, T., et al.: Membrane systems and tools combining dynamical structures with reaction kinetics for applications in chronobiology. In: Frisco, P., Gheorghe, M., Perez-Jimenez, M.J. (eds.) Applications of Membrane Computing in Systems and Synthetic Biology. Series Emergence, Complexity, and Computation, vol. 7, pp. 133–173. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- 15.Harootunian, A.T., Kao, J.P.Y., Paranjape, S., Tsien, R.Y.: Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP\(_{3}\). Science 251, 75–78 (1991)CrossRefGoogle Scholar
- 16.Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI-a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
- 17.Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
- 18.Johnson, C.H., Golden, S.S., Ishiura, M., Kondo, T.: Circadian clocks in prokaryotes. Mol. Microbiol. 21(1), 5–11 (1996)CrossRefGoogle Scholar
- 19.Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley, Chichester (2008)Google Scholar
- 20.Lumpkin, E.A., Caterina, M.J.: Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007)CrossRefGoogle Scholar
- 21.Lynch, S.: Dynamical Systems with Applications Using MatLab. Birkhäuser, Basel (2004)MATHCrossRefGoogle Scholar
- 22.Nishiyama, S., Ohno, S., Ohta, N., Inoue, Y., Fukuoka, H., Ishijima, A., Kawagishi, I.: Thermosensing function of the Echerichia coli redox sensor Aer. J. Bacteriol. 192(6), 1740–1743 (2010)CrossRefGoogle Scholar
- 23.Paster, E., Ryu, W.S.: The thermal impulse response of Escherichia coli. PNAS 105(14), 5373–5377 (2008)CrossRefGoogle Scholar
- 24.Paun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 25.Romanovsky, A.A.: Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R37–R46 (2007)CrossRefGoogle Scholar
- 26.Ruoff, P.: Introducing temperature-compensation in any reaction kinetic oscillator model. J. Interdiscipl. Cycle Res. 23(2), 92–99 (1992)CrossRefGoogle Scholar
- 27.Sengupta, P., Garrity, P.: Sensing temperature. Curr. Biol. 23(8), R304 (2012)CrossRefGoogle Scholar
- 28.Sharma, V.K., Joshi, A.: Clocks, genes, and evolution. The evolution of circadian organization. In: Kumar, V. (ed.) Biological Rhythms, pp. 5–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 29.Viana, F., Pena, E., Belmonte, C.: Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat. Neurosci. 5(3), 254–260 (2002)CrossRefGoogle Scholar
- 30.Whitehead, K., Pan, M., Masumura, K., Bonneau, R., Baliga, N.S.: Diurnally entrained anticipatory behavior in archaea. PLoS One 4(5), e5485 (2009)CrossRefGoogle Scholar
- 31.Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase. Biofizika 9, 306–311 (1964)Google Scholar