Advertisement

On the Power of Catalytic P Systems with One Catalyst

  • Rudolf Freund
  • Petr Sosík
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9504)

Abstract

We show that catalytic P systems with one catalyst can simulate partially blind register machines and partially blind counter automata. To demonstrate their capability, we also present an example of a P automaton with one catalyst accepting a language with non-semilinear Parikh image as well as an example of a P system with one catalyst generating a non-semilinear vector set.

Keywords

Evolution Rule Register Machine Input Tape Skin Membrane Output Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), and by the Silesian University in Opava under the Student Funding Scheme, project SGS/6/2014.

References

  1. 1.
    Alhazov, A., Freund, R.: Small P systems defining non-semilinear sets. In: Adamatzky, A. (ed.) Automata, Universality, Computation. ECC, vol. 12, pp. 185–221. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Alhazov, A., Freund, R.: Small catalytic P systems. In: Workshop on Membrane Computing at UCNC, Auckland (2015)Google Scholar
  3. 3.
    Alhazov, A., Freund, R.: P systems with toxic objects. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 99–125. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. System Sci. 3, 315–332 (1974)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Vaszil, Gy.: P automata or purely communicating accepting P systems. In: Paun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theor. Comput. Sci. 330(2), 251–266 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (Tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 173–188. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Freund, R., Oswald, M.: A short note on analysing P systems. Bull. EATCS 78, 231–236 (2002)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.): CMC 2014. LNCS, vol. 8961. Springer, Heidelberg (2014)zbMATHGoogle Scholar
  10. 10.
    Sheila, A.: Greibach: remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7, 311–324 (1978)CrossRefGoogle Scholar
  11. 11.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  12. 12.
    Paun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000). also see TUCS Report 208, 1998, www.tucs.fi
  13. 13.
    Paun, Gh.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Paun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010)Google Scholar
  15. 15.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  16. 16.
    Sosík, P., Matýsek, J.: Membrane computing: when communication is enough. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 264–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    The P Systems Website: ppage.psystems.eu

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of InformaticsTU WienViennaAustria
  2. 2.Faculty of Philosophy and Science, Research Institute of the IT4Innovations Centre of ExcellenceSilesian University in OpavaOpavaCzech Republic

Personalised recommendations