Skip to main content

Elevated Temperature, Solid-State Cracking in Welds

  • Chapter
  • First Online:
Cracking Phenomena in Welds IV

Abstract

A number of elevated-temperature, solid-state cracking phenomena are associated with welded fabrication. These include ductility dip cracking which generally occurs during multipass welding, and reheat cracking which is usually associated with postweld heat treatment. Reheat cracking includes stress relief cracking of steels, strain-age cracking of Ni-base alloys, and relaxation cracking of stainless steels and Ni-base alloys. This paper describes the mechanism associated with each of these forms of cracking and methods to avoid such cracking. Weldability tests that can be used to quantify susceptibility to the various forms of cracking will also be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that Alloy 800 is often considered a Ni-base alloy, even though the nominal Fe content is higher than the Ni content.

References

  1. Bengough, G.D.1912. A study of the properties of alloys at high temperatures, Journal of the Institute of Metals, VII: pp. 123-174.

    Google Scholar 

  2. Rhines, F.N. and P.J. Wray. 1961. Investigation of the intermediate temperature ductility minimum in metals, Transactions of the ASM, 54:117-128.

    Google Scholar 

  3. Mintz, B., Abu-Shosa, R., and Shaker, M. 1993. Influence of deformation induced ferrite, grain boundary sliding, and dynamic recrystallization on hot ductility of 0.1-0.75 wt% c steels, Mat. Sci. and Tech., 9:907-914

    Google Scholar 

  4. Hemsworth, B., T. Boniszewski, and N.F. Eaton. 1969. Classification and definition of high temperature welding cracks in alloys. Metal Construction & British Welding Journal, 16(1):5-16.

    Google Scholar 

  5. Cordea, J.N., Kammer, P.A., and Martin, D.C. 1964. Causes of fissuring in Ni-base and stainless steel alloy weld metals, Welding Journal, 43(11):481s-491s.

    Google Scholar 

  6. Haddrill, D.M. and Baker, R.G. 1965. Microcracking in austenitic weld metal, Brit. Weld. Jour., 12(8):411-418.

    Google Scholar 

  7. Lippold, J.C. and Ramirez, A.J. 2003. Elevated temperature grain boundary embrittlement and ductility-dip cracking of Ni-base weld metals, Proc. Conf. on Vessel Penetration, Inspection, Cracking, and Repairs, NRC, Gaithersburg, MD, Sept. 29-Oct 2, 2003.

    Google Scholar 

  8. Nissley, N.E, Collins, M.G., Guaytima, G., and Lippold, J.C. 2002. Development of the Strain-to-Fracture Test for Evaluating Ductility-Dip Cracking in Austenitic Stainless Steels and Ni-base Alloys, Welding in the World, 46, 7/8:32-40.

    Google Scholar 

  9. Lippold, J.C. and Nissley, N.E. 2007. Further investigations of ductility-dip cracking in high chromium, Ni-base Filler Metals, Welding in the World, 51, 9/10: 24-30.

    Google Scholar 

  10. DuPont, J.N., Lippold, J.C. and Kiser, S.D. 2009. Welding Metallurgy and Weldability of Nickel Base Alloys, pub. by Wiley and Sons, Inc. Hoboken, NJ, ISBN 978-0-470-08714-5, pp. 138-142.

    Google Scholar 

  11. Ramirez, A.J. and Lippold, J.C. 2004. High temperature cracking in nickel-base weld metal, Part 2– Insight into the mechanism, Materials Science and Engineering A, 380: 245-258.

    Google Scholar 

  12. Noecker II, F.F. and DuPont, J.N. 2009. Metallurgical investigation into ductility dip cracking in Ni-based alloys, Part I, Welding Journal, 88(1):7s-20s.

    Google Scholar 

  13. Noecker II, F.F. and DuPont, J.N. 2009. Metallurgical investigation into ductility dip cracking in Ni-based alloys, Part II, Welding Journal, 88(3):62s-77s.

    Google Scholar 

  14. Yamaguchi, S. 1979. Effect of Minor Elements on Hot Workability of Nickel-Base Superalloys, Met. Technol.,6(5):170-175.

    Google Scholar 

  15. Matsuda, F.1984. Weldability of Fe-36 % Ni alloy, II.-effect of chemical composition on reheated hot cracking in weld metal, Trans. JWRI, 13(2):241-247.

    Google Scholar 

  16. Nishimoto, K., Saida, K., and Okauchi, H. 2006. Microcracking susceptibility in reheated weld metal – Microcracking in multipass weld metal of Alloy 690 (Part 1), Sci. and Tech. of Welding and Joining, 11(4):455-461

    Google Scholar 

  17. Nishimoto, K., Saida, K., Okauchi, H. and Ohta, K. 2006. Microcracking susceptibility in reheated weld metal – Microcracking in multipass weld metal of Alloy 690 (Part 2), Sci. and Tech. of Welding and Joining, 11(4):462-470.

    Google Scholar 

  18. Nishimoto, K., Saida, K., Okauchi, H. and Ohta, K. 2006. Microcracking susceptibility in reheated weld metal – Microcracking in multipass weld metal of Alloy 690 (Part 3), Sci. and Tech. of Welding and Joining, 11(4):471-479

    Google Scholar 

  19. Collins, M.G. and Lippold, J.C. 2003. An investigation of ductility-dip cracking in nickel-based filler metals - Part I, Welding Journal, 82(10):288s-295s.

    Google Scholar 

  20. Zhang, Y.C., H. Nakagawa, and F. Matsuda. 1985. Weldability of Fe-36 %Ni Alloy (Report VI), Trans. JWRI, 14(5):125-134.

    Google Scholar 

  21. Zhang, Y.C., H. Nakagawa, and F. Matsuda. 1985. Weldability of Fe-36 %Ni Alloy (Report V), Trans. JWRI, 14(2):119-124.

    Google Scholar 

  22. Young, G.A, Capobianco, T.E, Penik, M.A, Morris, B.W., and McGee, J.J., 2008. The mechanism for ductility dip cracking in nickel-chromium alloys, Welding Journal, 87(2):31s-43s.

    Google Scholar 

  23. Collins, M.G. and Lippold, J.C. 2003. An investigation of ductility-dip cracking in Ni-base filler metals-Part 1, Welding Journal, 82(10):288s-295s.

    Google Scholar 

  24. Collins, M.G. and Lippold, J.C. 2003. An investigation of ductility-dip cracking in Ni-base filler metals-Part 2, Welding Journal, 82(12):348s-354s.

    Google Scholar 

  25. Collins, M.G., Ramirez, A.J. and Lippold, J.C. 2004. An investigation of ductility-dip cracking in Ni-base filler metals-Part 3, Welding Journal, 83(2):39s-49s.

    Google Scholar 

  26. Ramirez, A.J. and Lippold, J.C. 2004. High temperature cracking in nickel-base weld metal, Part 1– Ductility and Fracture Behavior, Materials Science and Engineering A, 380:259-271

    Google Scholar 

  27. Ramirez, A.J. and Lippold, J.C. 2005. New Insight into the Mechanism of Ductility Dip Cracking in Ni-base Weld Metals, Hot Cracking Phenomena in Welds, ISBN 978-3-540-22332-0, publ. by Springer, pp.19-41

    Google Scholar 

  28. Lippold, J.C. and Nissley, N.E. 2008. Ductility dip cracking in high-Cr Ni-base filler metals, Hot Cracking Phenomena in Welds II, ISBN 978-3-540-78627-6, publ. by Springer, pp. 409-426.

    Google Scholar 

  29. Nissley, N.E. and Lippold, J.C. 2008. Ductility-dip cracking susceptibility of Ni-based weld metals-Part 1, Welding Journal, 87(10):257s-264s.

    Google Scholar 

  30. Nissley, N.E. and Lippold, J.C. 2009. Ductility-dip cracking susceptibility of Ni-based weld metals, Part 2 – Microstructural Characterization, Welding Journal, 88(6):131s-140s.

    Google Scholar 

  31. Alexandrov, B.T.,Hope, A.T, Sowards, J.W., McCracken, S. and Lippold, J.C. 2011. Weldability studies of high-Cr, Ni-base filler metals for nuclear applications, Welding in the World, Vol. 55, No. 3/4, pp. 65-76.

    Google Scholar 

  32. Matsuda, F. 1990. Hot crack susceptibility of weld metal, Proc. of 1st US-Japan Symposium on Advances in Welding Metallurgy, published by the American Welding Society, pp. 19-36.

    Google Scholar 

  33. Lippold, J.C. and Lin, W. 1994. Unpublished research performed at Edison Welding Institute.

    Google Scholar 

  34. Kikel, J.M. and D.M. Parker. 1999. Ductility dip cracking susceptibility of filler metal 52 and Alloy 690, Trends in Welding Research V, ASM International, pp. 757-762.

    Google Scholar 

  35. Nissley, N.E. and Lippold, J.C. 2003. Development of the strain-to-fracture test for evaluating ductility-dip cracking in austenitic alloys, Welding Journal, 82(12):355s-364s.

    Google Scholar 

  36. Meitzner, C.F. 1975. Stress relief cracking in steel weldments, WRC Bulletin, No. 211.

    Google Scholar 

  37. Dhooge, A. and Vinckier, A. 1986. Reheat cracking – a review of recent studies, Welding in the World, 24, 5/6:2-18.

    Google Scholar 

  38. Dhooge, A. and Vinckier, A. 1992. Reheat cracking – a review of recent studies (1984-1990),Welding in the World, 30, 3/4:44-71.

    Google Scholar 

  39. Tamaki, K., Suzuki, J., Nakaseka, Y., and Tajiri, M. 1984. Effects of carbides on reheat cracking sensitivity, Trans. JWS, 15(1).

    Google Scholar 

  40. Tamaki, K. and Suzuki, J. 1983. Effect of chromium and molybdenum on reheat cracking sensitivity of steels, Trans. JWS, 14(2).

    Google Scholar 

  41. Tamaki, K. and Suzuki, J. 1984. Combined influences of phosphorus, chromium and molybdenum on reheat cracking of steels, Trans. JWS, 15(2).

    Google Scholar 

  42. Tamaki, K., Suzuki, J. and Tajiri, M. 1984. Effect of vanadium and titanium on reheat cracking sensitivity, Trans. JWS, 15(1).

    Google Scholar 

  43. Tamaki, K. and Suzuki, J. 1983. Reheat cracking test on high strength steels by modified implant test, Trans. JWS, 14(2).

    Google Scholar 

  44. McMahon, Jr., C.J. and Shin, J. 1984. Comparison of stress relief cracking in A508, C12 and A533B pressure vessel steels, Met. Sci., 8(18).

    Google Scholar 

  45. Watanabe, T. and Savage, W.F. 1984. A study of reheat cracking in weld heat affected zone of high strength steel, Trans. Natn. Res. Inst. Metals Japan, 26(4).

    Google Scholar 

  46. Kikuchi, T. and Nakao, Y. 1982. Effect of impurity elements on the reheat cracking in the weld zones of steel, Proc. 4th Int. JWS Symposium, Osaka, Japan, September 1982.

    Google Scholar 

  47. Thomas, Jr., R.D. 1984. HAZ cracking in thick sections of austenitic stainless steels-Part 1, Welding Journal, 63(9):24-32.

    Google Scholar 

  48. Thomas, Jr., R.D. 1984. HAZ cracking in thick sections of austenitic stainless steels-Part 2, Welding Journal, 63(9):355s-368s.

    Google Scholar 

  49. Curran, R.M., Rankin, A.W. 1955. Welding Type 347 stainless steel for 1100°F turbine operation, Welding Journal, 34(3 ):205-213.

    Google Scholar 

  50. Christoffel, R.J. 1962. Cracking in Type 347 heat-affected zone during stress relaxation, Welding Journal, 41(6):251s-256s.

    Google Scholar 

  51. Christoffel, R.J. 1960. Notch-rupture strength of Type 347 heat-affected zone, Welding Journal, 39(7):315s-320s.

    Google Scholar 

  52. Younger, R.N, Haddrill, d.M. and Baker, R.G. 1963. Post-weld heat treatment of high-temperature austenitic steels, JISI, 201:693-698.

    Google Scholar 

  53. Thomas, Jr., R.D. and Messler, Jr., R.W. 1997. Welding Type 347 stainless steel – an interpretive report, WRC Bulletin, No. 421.

    Google Scholar 

  54. Van Wortel, H. 2007. Control of relaxation cracking in austenitic high temperature components, NACE 2007, pp.2216-2228.

    Google Scholar 

  55. Kiso, T., Seshimo, I. and Okazaki, T. 2011. Cracking in welds of heavy wall nickel alloy piping during fabrication, NACE 2011.

    Google Scholar 

  56. Nishimoto, K., Matsunaga, T., Tanaka, T., and Okazaki, T. 1998. Effect of bismuth on reheat cracking susceptibility in Type 308 FCAW weld metal, Welding in the World, 41:220-235.

    Google Scholar 

  57. Van Wortel, H. 2007. Control of relaxation cracking in austenitic high temperature components, NACE 2007, pp.2216-2228.

    Google Scholar 

  58. Pense, A.W., Galda, E.J, and Powell, G.T. 1971. Stress relief cracking in pressure vessel steels, Welding Journal, 50(8):374s-378s.

    Google Scholar 

  59. Tamaki, K., and Suzuki, J. 1983. RHC test on high strength steel by a modified implant test, Trans. JWS, 14(2);33-38.

    Google Scholar 

  60. Younger, R.N. and Baker, R.G. 1960. Heat-affected zone cracking in welded high-temperature austenitic steels, JISI, 196:188-194.

    Google Scholar 

  61. Gleeble is the registered trademark of Dynamic Systems Inc., Poestenkill, NY., http://gleeble.com.

  62. Balaguer, J.P., Wang, Z. and Nippes, E.F. 1989. Stress relief cracking of copper containing HSLA steel, Welding Journal, 68(4):121s-131s.

    Google Scholar 

  63. Nawrocki, J.G., Dupont, J.N., Robino, C.V., Puskar, J.D. and Marder, A.R. 2003. The mechanism of stress-relief cracking in a ferritic alloy steel, Welding Journal, 82(2):25s-35s.

    Google Scholar 

  64. Norton, S.J. and Lippold, J.C. 2003. Development of a Gleeble-based Test for Postweld Heat Treatment Cracking Susceptibility, Trends in Welding Research VI, publ. by ASM International, pp. 609-614.

    Google Scholar 

  65. Haure, J. and Bocquet, P. 1975. Fissuration sous les revêtments inoxyables des pièces pour cuvées sous pression (Cracking below stainless steel cladding under tension), Convention No. 6210-75/3/303, Creusot Loire, Sept. 1975.

    Google Scholar 

  66. S. Kou, Welding Metallurgy, 1st Edition, published by Wiley Interscience, Inc.

    Google Scholar 

  67. Berry, T.F. and Hughes, W.P. 1969.A study of the strain-age cracking characteristics in welded René 41 – Phase II, Welding Journal, 46(11):505s-513s.

    Google Scholar 

  68. Baker, R.G. and Newman, R.P. 1969. Cracking in welds, Metal Construction and Br. Weld. J., 1:1-4.

    Google Scholar 

  69. Franklin, J.G. and Savage, W.F. 1974. Stress Relaxation and Strain-Age Cracking in René 41 Weldments, Welding Journal, 53(9):380s-387s.

    Google Scholar 

  70. McKeon, D. 1971. Re-heat cracking in high nickel alloy heat-affected zones, Welding Journal, 50(5):201s-205s.

    Google Scholar 

  71. Nakao, Y. 1988. Study on reheat cracking of Ni-base superalloy, Waspaloy, Trans. JWS, 19(1):66-74.

    Google Scholar 

  72. Prager, M. and Shira, C. S. 1968. Welding of precipitation-hardening nickel-base alloys, Welding Research Council Bulletin 128.

    Google Scholar 

  73. Younger, R.N. and Barker, R.G. 1961. Heat-affected zone cracking in welded austenitic steels during heat treatment, Brit. Weld. Jour. 8(12):579-587.

    Google Scholar 

  74. Wu, K. C., and Herfert, R. E. 1967. Microstructural studies of René 41 simulated weld heat-affected zones, Welding Journal 46(1): 32s-38s.

    Google Scholar 

  75. Weiss, S., Hughes, W. P., and Macke, H. J. 1962. Welding evaluation of high temperature sheet materials by restraint patch testing, Welding Journal 41(1): 17s-22s.

    Google Scholar 

  76. Hughes, W. P., and Berry, T. F. 1967. A study of the strain-age cracking characteristics in welded Rene 41-Phase I, Welding Journal 46(8): 361s-370s.

    Google Scholar 

  77. Duvall, D. S., and Owczarski, W. A. 1969. Studies of postweld heat-treatment cracking in nickel-base alloys, Welding Journal 48(1): 10s-22s.

    Google Scholar 

  78. Duvall, D. S., and Owczarski, W. A. 1971. Heat treatments for improving the weldability and formability of Udimet 700, Welding Journal 50(9): 401s-409s.

    Google Scholar 

  79. Rowe, M.D. 2006. Ranking the resistance of wrought superalloys to strain-age cracking, Welding Journal, 85(2)27s-34s.

    Google Scholar 

  80. Metzler, D.A. 2008. A Gleeble®-based methodology for ranking the strain-age cracking susceptibility of Ni-based superalloys, Welding Journal, 87(10):249s-256s.

    Google Scholar 

  81. Dix, A.W. and Savage, W.F. 1971. Factors influencing strain-age cracking in Inconel X-750, Welding Journal, 50(6):247s-252s.

    Google Scholar 

  82. Nakamura, H., Naiki, T., and Okabayashi, H. 1970. Relation between stress-relief cracking and metallurgical properties of low alloy steels, Trans. JWS, 1(2):60-71.

    Google Scholar 

  83. Haure, J. and Bocquet, P. 1975. Fissuration sous les revêtments inoxyables des pièces pour cuvées sous pression (Cracking below stainless steel cladding under tension), Convention No. 6210-75/3/303, Creusot Loire, Sept. 1975.

    Google Scholar 

  84. Ito, Y. and Nakanishi, M. 1972. Study on stress relief cracking in welded low alloy steels, IIW Doc. X-668-72.

    Google Scholar 

  85. Brear, J.M. and King, B.L. 1980. An assessment of the embrittling effects of certain residual elements in two nuclear pressure vessel steels (A533B, A508), Phil. Trans. Royal Soc. London, A 295:291.

    Google Scholar 

  86. Hrivnak, I., Magula, A., Zajac, J., and Smida, T., 1985. Mathematical evaluation of steel resistance to reheat cracking, IIW Doc. IX-1346-85.

    Google Scholar 

Download references

Acknowledgements

This paper reflects the contributions of many graduate students and postdocs who I have had the pleasure of interacting with at Ohio State University. These individuals include Dr. Antonio Ramirez, Dr. Nathan Nissley, Mr. Matt Collins, and Dr. Seth Norton. Much of this paper was excerpted from a book entitled Welding Metallurgy and Weldability published by John Wiley and Sons, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Lippold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lippold, J.C. (2016). Elevated Temperature, Solid-State Cracking in Welds. In: Boellinghaus, T., Lippold, J., Cross, C. (eds) Cracking Phenomena in Welds IV. Springer, Cham. https://doi.org/10.1007/978-3-319-28434-7_12

Download citation

Publish with us

Policies and ethics