Skip to main content

Process Intensification: Industrial Applications

Abstract

The chapter presents process intensification technologies used in industrial applications, for increasing the eco-efficiency of the chemical equipment with the benefit of lower capital costs, substantial energy saving, reduced footprint, and safety by design. The key topics cover compact heat exchangers, static mixers, green chemical reactors (e.g., microreactors), high-gravity (HiGee) technology, cyclic distillation, dividing-wall column, and reactive distillation.

Keywords

  • Distillation Column
  • Methyl Acetate
  • Process Intensification
  • Reactive Distillation
  • Liquid Holdup

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28392-0_8
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28392-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11
Fig. 8.12
Fig. 8.13
Fig. 8.14

References

  1. Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process 42:137–144

    CAS  CrossRef  Google Scholar 

  2. van Gerven T, Stankiewicz A (2009) Structure, energy, synergy, time—the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474

    CrossRef  Google Scholar 

  3. Harmsen GJ (2010) Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation. Chem Eng Process 49:70–73

    CAS  CrossRef  Google Scholar 

  4. Sanders JPM, Clark JH, Harmsen GJ, Heeres HJ, Heijnen JJ, Kersten SRA, van Swaaij WPM, Moulijn JA (2012) Process intensification in the future production of base chemicals from biomass. Chem Eng Process 51:117–136

    CAS  CrossRef  Google Scholar 

  5. Boodhoo K, Harvey A (eds) (2013) Process intensification technologies for green chemistry: innovative engineering solutions for sustainable chemical processing. Wiley, New York

    Google Scholar 

  6. Reay D, Ramshaw C, Harvey A (2013) Process intensification—engineering for efficiency, sustainability and flexibility, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  7. Lutze P, Babi DK, Woodley JM, Gani R (2013) Phenomena based methodology for process synthesis incorporating process intensification. Ind Eng Chem Res 52:7127–7144

    CAS  CrossRef  Google Scholar 

  8. Commenge J-M, Falk L (2014) Methodological framework for choice of intensified equipment and development of innovative technologies. Chem Eng Process 84:109–127

    CAS  CrossRef  Google Scholar 

  9. Freund H, Sundmacher K (2008) Towards a methodology for the systematic analysis and design of efficient chemical processes—part 1: from unit operations to elementary process functions. Chem Eng Process 47:2051–2060

    CAS  CrossRef  Google Scholar 

  10. Kays WM, London AL (1998) Compact heat exchangers, 3rd edn. Krieger Pub Co, Malabar

    Google Scholar 

  11. Hesselgreaves JE (2001) Compact heat exchangers: selection, design and operation. Pergamon, oxford

    Google Scholar 

  12. Shah RK, Kraus AD, Metzger D (1990) Compact heat exchangers. Taylor & Francis, New York

    Google Scholar 

  13. Dimian AC, Bildea CS, Kiss AA (2014) Integrated design and simulation of chemical processes, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  14. Edward PL (2004) Handbook of industrial mixing-science and practice. Wiley, Hoboken

    Google Scholar 

  15. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G (2003) Static mixers in the process industries—a review. Chem Eng Res Des 81:787–826

    CAS  CrossRef  Google Scholar 

  16. Doble M (2008) Green reactors. Chem Eng Prog 104(8):33–42

    CAS  Google Scholar 

  17. DeRosa T (2014) Engineering green chemical processes: renewable and sustainable design. McGraw-Hill Professional, New York

    Google Scholar 

  18. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  19. Wirth T (ed) (2013) Microreactors in organic chemistry and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  20. Reschetilowski W (ed) (2013) Microreactors in preparative chemistry: practical aspects in bioprocessing, nanotechnology, catalysis and more. Wiley-VCH, Weinheim

    Google Scholar 

  21. Ramshaw C (1983) HiGee distillation—an example of process intensification. Chem Eng (London) 389:13–14

    Google Scholar 

  22. Rao DP, Bhowal A, Goswami PS (2004) Process intensification in rotating packed beds (HiGee): an appraisal. Ind Eng Chem Res 43:1150–1162

    CAS  CrossRef  Google Scholar 

  23. Reddy KJ, Gupta A, Rao DP (2006) Process intensification in a HIGEE with split packing. Ind Eng Chem Rese 45:4270–4277

    CAS  CrossRef  Google Scholar 

  24. TU Dormund (2015) www.fvt.bci.tu-dortmund.de/cms/en/research/research_topics/Process_intensification_by_unit_operation_design/index.html. Accessed 24 June 2015

  25. Wang GQ, Xu ZC, Ji JB (2011) Progress on Higee distillation—introduction to a new device and its industrial applications. Chem Eng Res Des 89:1434–1442

    CAS  CrossRef  Google Scholar 

  26. Stankiewicz A, Moulijn JA (2004) Re-engineering the chemical processing plant: process intensification. Marcel Dekker, New York

    Google Scholar 

  27. Kiss AA (2014) Distillation technology—still young and full of breakthrough opportunities. J Chem Technol Biotechnol 89:479–498

    CAS  CrossRef  Google Scholar 

  28. Maleta VN, Kiss AA, Taran VM, Maleta BV (2011) Understanding process intensification in cyclic distillation systems. Chem Eng Process 50:655–664

    CAS  CrossRef  Google Scholar 

  29. Maleta BV, Shevchenko A, Bedryk O, Kiss AA (2015) Pilot-scale studies of process intensification by cyclic distillation. AIChE J 61:2581–2591

    CAS  CrossRef  Google Scholar 

  30. Kiss AA (2013) Advanced distillation technologies—design, control and applications. Wiley, New York

    CrossRef  Google Scholar 

  31. Pătruţ C, Bildea CS, Kiss AA (2014) Catalytic cyclic distillation—a novel process intensification approach in reactive separations. Chem Eng Process Process Intensif 81:1–12

    CrossRef  Google Scholar 

  32. Kiss AA, Olujic Z (2014) A review on process intensification in internally heat-integrated distillation columns. Chem Eng Process 86:125–144

    CAS  CrossRef  Google Scholar 

  33. Petlyuk FB (2004) Distillation theory and its application to optimal design of separation units. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  34. Yildirim O, Kiss AA, Kenig EY (2011) Dividing wall columns in chemical process industry: a review on current activities. Sep Purif Technol 80:403–417

    CAS  CrossRef  Google Scholar 

  35. Dejanović I, Matijašević L, Olujić Ž (2010) Dividing wall column—a breakthrough towards sustainable distilling. Chem Eng Process 49:559–580

    CrossRef  Google Scholar 

  36. Wright RO (1949) Fractionation apparatus. US Patent No. 2471134

    Google Scholar 

  37. Kaibel G (1987) Distillation columns with vertical partitions. Chem Eng Technol 10:92–98

    CrossRef  Google Scholar 

  38. Asprion N, Kaibel G (2010) Dividing wall columns: fundamentals and recent advances. Chem Eng Process 49:139–146

    CAS  CrossRef  Google Scholar 

  39. Olujić Ž, Kaibel B, Jansen H, Rietfort T, Zich E, Frey G (2003) Distillation column internals/configurations for process intensification. Chem Biochem Eng Quart 17:301–309

    Google Scholar 

  40. Agrawal R (2001) Processes for multicomponent separation. US Patent No. 6286335

    Google Scholar 

  41. Ghadrdan M, Halvorsen IJ, Skogestad S (2011) Optimal operation of Kaibel distillation columns. Chem Eng Res Des 89:1382–1391

    CAS  CrossRef  Google Scholar 

  42. Rong B-G (2011) Synthesis of dividing-wall columns (DWC) for multicomponent distillations—a systematic approach. Chem Eng Res Des 89:1281–1294

    CAS  CrossRef  Google Scholar 

  43. Kiss AA, Bildea CS (2011) A control perspective on process intensification in dividing-wall columns. Chem Eng Process 50:281–292

    CAS  CrossRef  Google Scholar 

  44. Taylor R, Krishna R (2000) Modelling reactive distillation. Chem Eng Sci 55:5183–5229

    CAS  CrossRef  Google Scholar 

  45. Sundmacher K, Kienle A (eds) (2003) Reactive distillation: status and future directions. Wiley-VCH, Weinheim

    Google Scholar 

  46. Sundmacher K, Kienle A, Seidel-Morgenstern A (eds) (2005) Integrated chemical processes: synthesis, operation, analysis, and control. Wiley-VCH, Weinheim

    Google Scholar 

  47. Luyben WL, Yu CC (2008) Reactive distillation design and control. Wiley-AIChE, New York

    CrossRef  Google Scholar 

  48. Noeres C, Kenig EY, Gorak A (2003) Modelling of reactive separation processes: reactive absorption and reactive distillation. Chem Eng Process 42:157–178

    CAS  CrossRef  Google Scholar 

  49. Krishna R (2002) Reactive separations: more ways to skin a cat. Chem Eng Sci 57:1491–1504

    CAS  CrossRef  Google Scholar 

  50. Hoffman A, Noeres C, Gorak A (2004) Scale-up of reactive distillation columns with catalytic packings. Chem Eng Process 43:383–395

    CrossRef  Google Scholar 

  51. Harmsen GJ (2007) Reactive distillation: the front-runner of industrial process intensification: a full review of commercial applications, research, scale-up, design and operation. Chem Eng Process 46:774–780

    CAS  CrossRef  Google Scholar 

  52. Shah M, Kiss AA, Zondervan E, de Haan AB (2012) A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chem Eng Process 60:55–64

    CAS  CrossRef  Google Scholar 

  53. Kiss AA (2012) Applying reactive distillation. NPT Procestechnol 19(1):22–24

    CAS  Google Scholar 

  54. Agreda VH, Partin LR, Heise WH (1990) High-purity methyl acetate via reactive distillation. Chem Eng Process 86:40–46

    CAS  Google Scholar 

  55. Siirola JJ (1996) Industrial applications of chemical process synthesis. Adv Chem Eng 23:1–62

    CAS  CrossRef  Google Scholar 

  56. Mahajani SM, Chopade SP (2000) Reactive distillation: processes of commercial importance. In: Wilson ID, Edlard TR, Poole CA, Cooke M (eds) Encyclopedia of separation science. Academic, London, pp 4075–4082

    CrossRef  Google Scholar 

  57. Huss RS, Chen F, Malone MF, Doherty MF (2003) Reactive distillation for methyl acetate production. Comput Chem Eng 27:1855–1866

    CAS  CrossRef  Google Scholar 

  58. Tsouris C, Porcelli JV (2003) Process intensification: has its time finally come? Chem Eng Prog 99(10):50–55

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Kiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiss, A.A. (2016). Process Intensification: Industrial Applications. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_8

Download citation