Skip to main content

Process Intensification by Reactive Distillation

Abstract

Reactive distillation stands out as a successful example of a process intensification technology for enhanced chemical manufacture. After almost a century of development, it has achieved a high degree of maturity in terms of design capabilities, the availability of commercial suppliers of hardware and software, and a large variety of processes effectively implemented at the industrial scale. Based upon an extensive review of the classical and recent literature on reactive distillation, this chapter briefly describes the context in which the technology was developed, its current status, and the expected areas for progress in the near future. In addition, the intensification principles behind the operation, its fundamentals, constrains, design methodologies, the optimization approaches, and the control strategies are discussed with fair detail. Finally, a case study on the ethyl acetate production via esterification of acetic acid with ethanol by reactive distillation is presented. It this example, a complete process synthesis procedure is described, from the conceptual design all the way to the process optimization.

Keywords

  • Distillation Column
  • Extractive Distillation
  • Reactive Distillation
  • Relative Volatility
  • Divide Wall Column

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28392-0_6
  • Chapter length: 51 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28392-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26

References

  1. Rudd DF, Watson CC (1968) Strategy of process engineering. Wiley, New York

    Google Scholar 

  2. Douglas JM (1988) Conceptual design of chemical processes. McGraw-Hill, Singapore

    Google Scholar 

  3. Yuan Z, Chen B (2012) Process synthesis for addressing the sustainable energy systems and environmental issues. AIChE J 58(11):3370–3389

    CAS  CrossRef  Google Scholar 

  4. Yuan Z, Chen B, Gani R (2013) Applications of process synthesis: moving from conventional chemical processes towards biorefinery processes. Comput Chem Eng 49:217–229

    CAS  CrossRef  Google Scholar 

  5. Shonnard D, Askicherer A, Saling P (2003) Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37(23):5340–5348

    CAS  CrossRef  Google Scholar 

  6. Cremaschi S (2014) A perspective on process synthesis: challenges and prospects. In: Eden MR, Siirola JD, Towler GP (eds) Proceedings of the 8th international conference on foundations of computer-aided process design—FOCAPD 2014, July 13–17 2014, Washington, DC

    Google Scholar 

  7. Li X, Kraslawski A (2004) Conceptual process synthesis: past and current trends. Chem Eng Process 43:589–600

    CrossRef  Google Scholar 

  8. Harmsen GJ, Chewter LA (1999) Industrial applications of multifunctional, multi-phase reactors. Chem Eng Sci 54:1541–1545

    CAS  CrossRef  Google Scholar 

  9. Stankiewicz AI, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96(1):22–34

    CAS  Google Scholar 

  10. Stankiewicz AJ (2002) Process intensification. Ind Eng Chem Res 41:1920–1924

    CAS  CrossRef  Google Scholar 

  11. Stankiewicz A (2003) Reactive separations for process intensification: an industrial perspective. Chem Eng Process 42:137–144

    CAS  CrossRef  Google Scholar 

  12. Gerven TV, Stankiewicz A (2009) Structure, energy, synergy, time—the fundamentals of process intensification. Ind Eng Chem Res 48(5):2465–2474

    CrossRef  Google Scholar 

  13. Lutze P, Gani R, Woodley JM (2010) Process intensification: a perspective on process synthesis. Chem Eng Process 49:547–558

    CAS  CrossRef  Google Scholar 

  14. Sundmacher K, Kienle A (eds) (2003) Reactive distillation—status and future directions. Wiley–VCH, New York

    Google Scholar 

  15. Le Chatelier H (1888) Recherches Experimentales et Theoriques sur les Equilibres Chimiques (Experimental and Theoretical Research on Chemical Equilibria). Annales des Mines, Hutieme Serie, Memiories, XIII. Dunod, Paris

    Google Scholar 

  16. Berthelot M, Pean de St. Gilles L (1862) Recherches sur les afinites de la formation et de la descomposition des ethers (Research on the affinities of formation and decomposition of esters). Ann Chim Phys 3(65):385–422

    Google Scholar 

  17. Berthelot M, Pean de St. Gilles L (1862) Recherches sur les afinites de la formation et de la descomposition des ethers—II (Research on the affinities of formation and decomposition of esters—part II). Ann Chim Phys 3(66):5–109

    Google Scholar 

  18. Berthelot M, Pean de St. Gilles L (1863) Recherches sur les afinites de la formation et de la descomposition des ethers—III–IV (Research on the affinities of formation and decomposition of esters—part III and IV). Ann Chim Phys 3(68):225–359

    Google Scholar 

  19. Keyes DB (1932) Esterification processes and equipment. Ind Eng Chem 24(10):1096–1103

    CAS  CrossRef  Google Scholar 

  20. Backhaus A (1921) Continuous process for the manufacture of esters. US Patent 1400849

    Google Scholar 

  21. Backhaus A (1921) Apparatus for the manufacture of esters. US Patent 1400850

    Google Scholar 

  22. Backhaus A (1921) Apparatus for the production of esters. US Patent 1400851

    Google Scholar 

  23. Backhaus A (1921) Method for the production of esters. US Patent 1400852

    Google Scholar 

  24. Backhaus A (1922) Apparatus for producing high-grade esters. US Patent 1403224

    Google Scholar 

  25. Backhaus A (1922) Process of esterification. US Patent 1403225

    Google Scholar 

  26. Backhaus A (1922) Apparatus for the manufacture of esters. US Patent 1425624

    Google Scholar 

  27. Backhaus A (1923) Process for the manufacture of esters. US Patent 1425625

    Google Scholar 

  28. Backhaus A (1923) Method for the production of ester-condensation products. US Patent 1425626

    Google Scholar 

  29. Backhaus A (1923) Process of producing high-grade esters. US Patent 1454462

    Google Scholar 

  30. Backhaus A (1923) Process of esterification. US 1454463

    Google Scholar 

  31. Haunschild WM (1971) Separation of linear olefins from ternary olefins. US Patent 3629478

    Google Scholar 

  32. Steffens JA (1922) Process of obtaining complete alcoholysis. US Patent 1433308

    Google Scholar 

  33. Leyes CE, Othmer DF (1945) Continuous esterification of butanol and acetic acid, kinetic and distillation considerations. Trans Am Inst Chem Eng 41:157–196

    CAS  Google Scholar 

  34. Berman S, Isbenjian H, Sedoff A, Othmer D (1948) Continuous production of dibutyl phthalate in a distillation column. Ind Eng Chem 40(11):2139–2148

    CAS  CrossRef  Google Scholar 

  35. Vodonik J (1958) Continuous ester interchange process. US Patent 2829153 A

    Google Scholar 

  36. Hurt D, Pieper H (1959) Production of bis(2-hydroxyethyl) terephthalate through ester interchange. US Patent 2905707 A

    Google Scholar 

  37. Tanabe K, Hölderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal Gen 181:399–434

    CAS  CrossRef  Google Scholar 

  38. Marcilly C (2003) Present status and future trends in catalysis for refining and petrochemicals. J Catal 216:47–62

    CAS  CrossRef  Google Scholar 

  39. Sennewald K, Gehrmann K, Schafer S (1971) Column for carrying out organic chemical reactions in contact with fine particulate catalyst. US patent 3579309

    Google Scholar 

  40. Haunschild WM (1972) Separation of chemicals using fractionation and heterogeneous catalysis. US Patent 3634534

    Google Scholar 

  41. Haunschild WM (1972) Separation and catalysis. US Patent 3634535

    Google Scholar 

  42. McCarthy JE, Tiemann M (2006) MTBE in gasoline: clean air and drinking water issues. Congressional Research Service Reports. Paper 26

    Google Scholar 

  43. Agreda VH, Partin LR (1984). Reactive distillation process for the production of methyl acetate. US Patent 4435595

    Google Scholar 

  44. Agreda VH, Partin LR, Heise WH (1990) High-purity methyl acetate via reactive distillation. Chem Eng Prog 86(2):40–46

    CAS  Google Scholar 

  45. Siirola JJ (1996) Industrial applications of chemical process synthesis. Adv Chem Eng 23:1–62

    CAS  CrossRef  Google Scholar 

  46. Keller T (2014) Reactive distillation. In: Górak A, Olujić Z (eds) Distillation: equipment and processes. Academic, London, Chapter 8

    Google Scholar 

  47. Tuchlenski A, Beckmann A, Reusch D, Düssel R, Weidlich U, Janowsky R (2001) Reactive distillation—industrial applications, process design & scale-up. Chem Eng Sci 56:387–394

    CAS  CrossRef  Google Scholar 

  48. Beckmann A, Nierlich F, Popken T, Reusch D, von Scala C, Tuchlenski A (2002) Industrial experience in the scale-up of reactive distillation with examples from C4-chemistry. Chem Eng Sci 57:1525–1530

    CAS  CrossRef  Google Scholar 

  49. Schoenmakers H, Bessling B (2003) Reactive and catalytic distillation from an industrial perspective. Chem Eng Process 42:145–155

    CAS  CrossRef  Google Scholar 

  50. Hiwale R, Bhate N, Mahajan Y, Mahajani S (2004) Industrial applications of reactive distillation: recent trends. Int J Chem Eng 2(R1):1–52

    Google Scholar 

  51. Harmsen GJ (2007) Reactive distillation: the front-runner of industrial process intensification—a full review of commercial applications, research, scale-up, design and operation. Chem Eng Process 46:774–780

    CAS  CrossRef  Google Scholar 

  52. Lutze P, Dada E, Gani R, Woodley J (2010) Heterogeneous catalytic distillation—a patent review. Recent Pat Chem Eng 3:208–229

    CAS  CrossRef  Google Scholar 

  53. Siirola JJ (2012) Goal-oriented process synthesis augmented with constraint oriented process synthesis. https://www.sintef.no/globalassets/project/trondheim_gts/seminar-series/jeff-siirola---process-synthesis.pdf. Accessed 22 Feb 2015

  54. Matthey (2014) New biodiesel technology wins prestigious IChemE Sustainable Technology Award. http://www.matthey.com/media_and_news/news/2014/biodiesel-icheme-sustainable-technology-award. Accessed 22 Feb 2015

  55. Alper E (ed) (1983) Mass transfer with chemical reaction in multiphase systems. Springer, Dordrecht, pp 391–414

    CrossRef  Google Scholar 

  56. McKetta J (ed) (1993) Encyclopedia of chemical processing and design, vol 46. CRC, New York, pp 230–243

    Google Scholar 

  57. Stichlmair J, Fair J (1998) Distillation, principles and practice. Wiley–VCH, New York, pp 252–283

    Google Scholar 

  58. Doherty M, Malone M (2001) Conceptual design of distillation systems. McGraw–Hill, New York, Chapter 10

    Google Scholar 

  59. Wilson ID, Edlard TR, Poole CA, Cooke M (eds) (2001) Encyclopedia of separation science. Academic, London, pp 4075–4082

    Google Scholar 

  60. Horvath I (Editor-in-Chief) (2002) Encyclopedia of catalysis, vol 2. Wiley, New York, pp 477–505

    Google Scholar 

  61. Kulprathipanja S (ed) (2002) Reactive separation processes. Taylor & Francis, New York, pp 18–40, Chapter 2

    Google Scholar 

  62. Mujtaba I (2004) Batch distillation: design and operation. Imperial College Press, London, pp 270–301, Chapter 9

    Google Scholar 

  63. Lei Z, Chen B, Ding C (2005) Special distillation processes. Elsevier, Amsterdam, pp 178–218, Chapter 4

    CrossRef  Google Scholar 

  64. Afonso C (2005) Green separation processes. Wiley-VCH, Weinheim, pp 127–154, Chapter 3.2

    CrossRef  Google Scholar 

  65. Luyben W (2006) Distillation design and control using AspenTM simulation. Wiley, Hoboken, pp 232–250, Chapter 9

    CrossRef  Google Scholar 

  66. Schmidt-Traub H, Górak A (eds) (2006) Integrated reaction and separation operations—modelling and experimental validation. Springer, New York

    Google Scholar 

  67. Keil F (ed) (2007) Modeling of process intensification. WILEY-VCH, Weinheim, pp 323–363, Chapter 10

    CrossRef  Google Scholar 

  68. Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) (2008) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim, Part 10:10.6, pp 2188–2198

    Google Scholar 

  69. Luyben W, Yu C (2008) Reactive distillation design and control. Wiley, Hoboken

    CrossRef  Google Scholar 

  70. Sakuth M, Reusch D, Janowsky R (2008) Ullmann’s encyclopedia of industrial chemistry, vol 31. Wiley-VCH, Weinheim, pp 263–276

    Google Scholar 

  71. Rangaiah G, Kariwala V (eds) (2012) Plantwide control: recent developments and applications. Wiley, Taipei, pp 319–338, Chapter 15

    CrossRef  Google Scholar 

  72. Boodhoo K, Harvey A (2013) Process intensification for green chemistry: engineering solutions for sustainable chemical processing. Wiley, Hoboken, pp 251–274, Chapter 9

    CrossRef  Google Scholar 

  73. Kiss A (2013) Advanced distillation technologies: design, control and applications. Wiley, Hoboken, pp 353–391, Chapter 10

    CrossRef  Google Scholar 

  74. Ramaswamy S, Huang H, Ramarao B (eds) (2013) Separation and purification technologies in biorefineries. Wiley, Chichester, Chapter 16

    Google Scholar 

  75. Górak A, Olujić Z (eds) (2014) Distillation: equipment and processes. Academic, London, pp 261–294, Chapter 8

    Google Scholar 

  76. Hong X, McGiveron O, Lira C, Orjuela A, Peereboom L, Miller D (2012) A reactive distillation process to produce 5-hydroxy-2-methyl-1,3-dioxane from mixed glycerol acetal isomers. Org Process Res Dev 16:1141–1145

    CAS  CrossRef  Google Scholar 

  77. Okasinski M, Doherty M (1998) Design method for kinetically controlled, staged reactive distillation columns. Ind Eng Chem Res 37(7):2821–2834

    CAS  CrossRef  Google Scholar 

  78. Dimian A, Bildea C (2008) Chemical process design: computer-aided case studies. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  79. Doherty M (1993) Design and synthesis of reactive separation systems. http://www.osti.gov/scitech/servlets/purl/10129139. Accessed 22 Feb 2015

  80. Sundmacher K, Rihko L, Hoffmann U (1994) Classification of reactive distillation processes by dimensionless numbers. Chem Eng Commun 127:151–167

    CrossRef  Google Scholar 

  81. Ottewell S (2014) Reactive distillation: will a sea change occur? Chemical processing. http://www.chemicalprocessing.com/articles/2014/reactive-distillation-edges-forward/. Accessed 22 Feb 2015

  82. Orjuela A, Kolah A, Hong X, Miller D, Lira C (2012) Diethyl succinate synthesis by reactive distillation. Sep Purif Technol 88:151–162

    CAS  CrossRef  Google Scholar 

  83. Dow (2011) AMBERLYST™ polymeric catalysts. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_07c8/0901b803807c82cb.pdf?filepath=liquidseps/pdfs/noreg/177-02436.pdf&fromPage=GetDoc. Accessed 22 Feb 2015

  84. Kolah A, Asthana N, Vu D, Lira C, Miller D (2008) Triethyl citrate synthesis by reactive distillation. Ind Eng Chem Res 47(4):1017–1025

    CAS  CrossRef  Google Scholar 

  85. Kolah K, Lira C, Miller D, Doctor R, Prindle J, Panchal C (2014) Heat integrated reactive distillation using external side reactors for synthesis of tri-ethyl citrate. AIChE Spring Meeting, March 30–April 3, New Orleans

    Google Scholar 

  86. Rihko-Struckmann L (2006) Integrated catalytic processes. Modern methods in heterogeneous catalysis research. Fritz Haber Institute, Berlin. http://www.fhiberlin.mpg.de/acnew/department/pages/teaching/pages/teaching__wintersemester__2006_2007/rihkostruckmann_integratedcatalyticprocesses_241106.pdf. Accessed 22 Feb 2015

  87. Hoffmann A, Noeres C, Górak A (2004) Scale-up of reactive distillation columns with catalytic packings. Chem Eng Process 43:383–395

    CAS  CrossRef  Google Scholar 

  88. Song W, Huss R, Doherty M, Malone M (1997) Discovery of a reactive azeotrope. Nature 338:561–563

    Google Scholar 

  89. Barbosa D, Doherty M (1988) The influence of equilibrium chemical reactions on vapor-liquid phase diagrams. Chem Eng Sci 43:529–540

    CAS  CrossRef  Google Scholar 

  90. Barbosa D, Doherty M (1998) The simple distillation of homogeneous reactive mixtures. Chem Eng Sci 43(3):541–550

    CrossRef  Google Scholar 

  91. Okasinski M, Doherty M (1997) Thermodynamic behavior of reactive azeotropes. AIChE J 43(9):2227–2238

    CAS  CrossRef  Google Scholar 

  92. Arlt W, Spuhl O, Klamt A (2004) Challenges in thermodynamics. Chem Eng Process 43:221–238

    CAS  CrossRef  Google Scholar 

  93. Frey T, Stichlmair J (1999) Thermodynamic fundamentals of reactive distillation. Chem Eng Technol 22(1):11–18

    CAS  CrossRef  Google Scholar 

  94. Gorovits B, Toikka A, Pisarenko Y, Serafimov L (2006) Thermodynamics of heterogeneous systems with chemical interaction. Theor Found Chem Eng 40(3):239–244

    CAS  CrossRef  Google Scholar 

  95. Sundmacher K, Kienle A, Seidel-Morgenstern A (2005) Integrated chemical processes. WILEY-VCH, Weinheim

    CrossRef  Google Scholar 

  96. Prausnitz J, Tavares F (2004) Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. AIChE J 50(4):739–761

    CAS  CrossRef  Google Scholar 

  97. Carlson E (1996) Don’t gamble with physical properties for simulation. Chem Eng Prog 92:35–46

    CAS  Google Scholar 

  98. Chen C, Mathias P (2002) Applied thermodynamics for process modeling. AIChE J 48(2):194–200

    CAS  CrossRef  Google Scholar 

  99. Hill D, Justice F (2011) Understand thermodynamics to improve process simulation. CEP Dec 20–25

    Google Scholar 

  100. Orjuela A, Kolah A, Lira C, Miller D (2011) Mixed succinic acid/acetic acid esterification with ethanol by reactive distillation. Ind Eng Chem Res 50:9209–9220

    CAS  CrossRef  Google Scholar 

  101. Orjuela A, Yanez A, Vu D, Bernard-Brunel D, Miller DJ, Lira CT (2010) Phase equilibria for reactive distillation of diethyl succinate: part I. System diethyl succinate + ethanol + water. Fluid Phase Equilib 290(1–2):63–67

    CAS  CrossRef  Google Scholar 

  102. Orjuela A, Yanez A, Rossman P, Vu D, Bernard-Brunel D, Miller DJ, Lira CT (2010) Phase equilibria for reactive distillation of diethyl succinate. Part II: systems diethyl succinate + ethyl acetate + water and diethyl succinate + acetic acid + water. Fluid Phase Equilib 290(1–2):68–74

    CAS  CrossRef  Google Scholar 

  103. Orjuela A, Yanez A, Evans J, Miller DJ, Lira CT (2011) Phase equilibria in binary mixtures with monoethyl succinate. Fluid Phase Equilib 309:121–127

    CAS  CrossRef  Google Scholar 

  104. Orjuela A (2010) Separation of succinic acid from fermentation broths and esterification by a reactive distillation method. Dissertation, Michigan State University

    Google Scholar 

  105. Pappu V (2012) Process intensification in the synthesis of organic esters: kinetics, simulations and pilot plant experiments. Dissertation, Michigan State University

    Google Scholar 

  106. Carberry J (2001) Chemical and catalytic reaction engineering. Dover, New York

    Google Scholar 

  107. Weisz P, Prater C (1954) Interpretation of measurements in experimental catalysis. Adv Catal 6:143–196

    CAS  Google Scholar 

  108. Kaibel G, Schoenmakers H (2002) Process synthesis and design in industrial practice. Comput Aided Chem Eng 10:9–22

    CAS  CrossRef  Google Scholar 

  109. Thery R, Meyer XM, Joulia X, Meyer M (2005) Preliminary design of reactive distillation columns. Chem Eng Res Des 83(A4):379–400

    CAS  CrossRef  Google Scholar 

  110. Ung S, Doherty MF (1995) Vapor-liquid equilibrium in systems with multiple chemical reactions. Chem Eng Sci 50(1):23–48

    CAS  CrossRef  Google Scholar 

  111. Barbosa D (1987) Distillation of reactive mixtures. Doctoral Dissertation, University of Massachusetts

    Google Scholar 

  112. Lee JW, Hauan S, Lien KM, Westerberg AW (2000) A graphical method for designing reactive distillation columns. I. The Ponchon-Savarit method. Proc R Soc A Math Phys Eng Sci 456:1953–1964

    CAS  CrossRef  Google Scholar 

  113. Lee JW, Hauan S, Lien KM, Westerberg AW (2000) A graphical method for designing reactive distillation columns. II. The McCabe-Thiele method. Proc R Soc A Math Phys Eng Sci 456:1965–1978

    CAS  CrossRef  Google Scholar 

  114. Venkataraman S, Chan W, Boston J (1990) Reactive distillation using ASPEN PLUS. Chem Eng Prog 86(8):45–54

    CAS  Google Scholar 

  115. Taylor R, Krishna R (2000) Modelling reactive distillation. Chem Eng Sci 55:5183–5229

    CAS  CrossRef  Google Scholar 

  116. Kenig E (2012) Non-equilibrium modeling for reactive separations. International seminar on advanced separation operations. Universidad Nacional de Colombia, Bogotá

    Google Scholar 

  117. Molano P (2013) Process analysis of a reactive distillation column for the synthesis of n-Butyl acrylate—impact of the reactive section and the use of biological feedstock. Undergraduate dissertation, Universidad Nacional de Colombia

    Google Scholar 

  118. Fuhrmeister R (2011) Experimentelle und theoretische Untersuchung der Synthese von n-Butylacrylat in einer Vakuum-Reaktivrektikationskolonne. Master’s dissertation, TU Dortmund University

    Google Scholar 

  119. Kenig E (2008) Complementary modelling of fluid separation processes. Chem Eng Res Des 86:1059–1072

    CAS  CrossRef  Google Scholar 

  120. Almeida-Rivera CP, Grievink J (2004) Feasibility of equilibrium-controlled reactive distillation process: application of residue curve mapping. Comput Chem Eng 28:17–25

    CAS  CrossRef  Google Scholar 

  121. Domingues L, Pinheiro C, Oliveira N (2014) Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng 64:81–94

    CAS  CrossRef  Google Scholar 

  122. Cardoso MF, Salcedo RL, Feyo de Azevedo S, Barbosa D (2000) Optimization of reactive distillation processes with simulated annealing. Chem Eng Sci 55:5059–5078

    CAS  CrossRef  Google Scholar 

  123. Edgar TF, Himmelblau DM, Lasdon LS (2001) Optimization of chemical processes. McGraw-Hill, New York

    Google Scholar 

  124. Kiss AA, Segovia-Hernández JG, Bildea CS, Miranda-Galindo EY, Hernández S (2012) Reactive DWC leading the way to FAME and fortune. Fuel 95:352–359

    CAS  CrossRef  Google Scholar 

  125. Urselmann M, Barkmann S, Sand G, Engell S (2011) Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng 35:787–805

    CAS  CrossRef  Google Scholar 

  126. Miranda-Galindo E, Segovia-Hernández J, Hernández S, Gutiérrez-Antonio C, Briones-Ramírez A (2011) Reactive thermally coupled distillation sequences: pareto front. Ind Eng Chem Res 50(2):926–938

    CAS  CrossRef  Google Scholar 

  127. Coughanowr DR (1981) Process systems analysis and control, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  128. Cabrera-Ruiz J, Segovia-Hernandez JG, Alcantara-Avila, JR, Hernandez S (2012) Optimal dynamic controllability in compressor-aided distillation schemes using stochastic algorithms. In: Proceedings of the 22nd European symposium on computer aided process engineering, June 17–20, 2012, London

    Google Scholar 

  129. Santaella M, Rodriguez G, Segovia-Hernandez JG, Orjuela A (2014) Design of a thermally coupled reactive distillation sequence for triethyl citrate production. AIChE annual meeting, Atlanta, Nov 2014

    Google Scholar 

  130. Shatma N, Singh K (2010) Control of reactive distillation column: a review. Int J Chem React Eng 8(1), 1542–6580

    Google Scholar 

  131. Goedecke R (2011) Fluidverfahrenstechnik: Grundlagen, Methodik, Technik. Wiley, Praxis

    Google Scholar 

  132. Georgiadis MC, Schenk M, Pistikopoulos E, Gani R (2002) The interactions of design, control and operability in reactive distillation systems. Comput Chem Eng 26:735–746

    CAS  CrossRef  Google Scholar 

  133. Tang Y, Huang H, Chien I (2003) Design of a complete ethyl acetate reactive distillation system. J Chem Eng Japan 36(11):1352–1363

    CAS  CrossRef  Google Scholar 

  134. Huang H, Chien I, Lee H (2012) Plantwide control of a reactive distillation process. In: Kariwala V, Rangaiah GP (eds) Plantwide control: recent developments and applications. Wiley, Taipei, pp 319–338

    CrossRef  Google Scholar 

  135. Tian H, Zheng H, Huang Z, Qiu T, Wu Y (2012) Novel procedure for coproduction of ethyl acetate and n-butyl acetate by reactive distillation. Ind Eng Chem Res 51:5535–5541

    CAS  CrossRef  Google Scholar 

  136. Lai I, Liu Y, Yu C, Lee M, Huang H (2008) Production of high-purity ethyl acetate using reactive distillation: experimental and start-up procedure. Chem Eng Process: Process Intensif 47:1831–1843

    CAS  CrossRef  Google Scholar 

  137. Santaella M, Orjuela A, Narváez P (2015) Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chem Eng Process: Process Intensif 96:1–13

    CAS  CrossRef  Google Scholar 

  138. Atalay F (1994) Kinetics of the esterification reaction between ethanol and acetic acid. Dev Chem Eng Miner Process 2:181–184

    CrossRef  Google Scholar 

  139. Alejski K, Duprat F (1996) Dynamic simulation of the multicomponent reactive distillation. Chem Eng Sci 51:4237–4252

    CAS  CrossRef  Google Scholar 

  140. Schoenmakers H (2010) European roadmap of process intensification—technology report—reactive distillation. Creatieve Energie. EUROPIN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Orjuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Orjuela, A., Santaella, M.A., Molano, P.A. (2016). Process Intensification by Reactive Distillation. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_6

Download citation