Skip to main content

Heat-Integrated Intensified Distillation Processes

  • 2180 Accesses

Abstract

Heat integration between vapor and liquid streams has been widely used in chemical and petrochemical plants for conventional distillation processes as an alternative to reduce the energy consumption. However, with the advances that have been proposed in intensified distillation processes in the last couple of decades, heat-integrated alternatives that are more attractive than the typical condenser–reboiler heat integration have also been proposed. Therefore, intensified distillation processes also need a new approach methodology to implement optimal locations and heat load in heat-integrated distillation. This chapter aims to cover the fundamentals, simulation and optimization approaches for heat-integrated intensified distillation processes for nonreactive and reactive systems. Conventional distillation can result in an intensified process if heat integration is allowed at locations other than the condenser and reboiler. Although thermally coupled distillation and Heat-Integrated Distillation (HIDiC) are already intensified processes, they can attain higher energy reduction by rearranging their heat load distribution. For reactive systems, at the location subject to heat integration, vapor–liquid equilibrium and reaction kinetic conditions are modified simultaneously, which results in a very challenging problem. Reactive system via multi-effect and thermally coupled configuration is also covered in this chapter for the methyl acetate hydrolysis and esterification of isopropyl alcohol. The applications of heat-integrated intensified distillation show feasible solutions with improved energy efficiency and total annual cost reduction for new designs.

Keywords

  • Distillation Column
  • Total Annual Cost
  • Heat Integration
  • Methyl Acetate
  • Reactive Distillation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28392-0_5
  • Chapter length: 48 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28392-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22
Fig. 5.23
Fig. 5.24
Fig. 5.25
Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29
Fig. 5.30
Fig. 5.31
Fig. 5.32
Fig. 5.33
Fig. 5.34
Fig. 5.35
Fig. 5.36
Fig. 5.37
Fig. 5.38

References

  1. Alcántara-Avila JR, Hasebe S, Kano M (2013) New synthesis procedure to find the optimal distillation sequence with internal and external heat integrations. Ind Eng Chem Res 52(13):4851–4862. doi:10.1021/ie302863p

    CrossRef  Google Scholar 

  2. Alcántara-Avila JR (2012) Process intensification in distillation sequences. Dissertation, Kyoto University

    Google Scholar 

  3. Harwardt A, Marquardt W (2012) Heat-integrated distillation columns: vapor recompression or internal heat integration? AIChE J 58(12):3740–3750. doi:10.1002/aic.13775

    CAS  CrossRef  Google Scholar 

  4. Wang Y, Huang K, Wang S (2010) A simplified scheme of externally heat-integrated double distillation columns (EHIDDiC) with three external heat exchangers. Ind Eng Chem Res 49(7):3349–3364. doi:10.1021/ie901534q

    CAS  CrossRef  Google Scholar 

  5. Kiss AA, Flores Landaeta SJ, Infante Ferreira CA (2012) Towards energy efficient distillation technologies–making the right choice. Energy 47:531–542. doi:10.1016/j.energy.2012.09.038

    CAS  CrossRef  Google Scholar 

  6. Fonyo Z, Benkö N (1998) Comparison of various heat pump assisted distillation configurations. Chem Eng Res Des 76(3):348–360. doi:10.1205/026387698524776

    CAS  CrossRef  Google Scholar 

  7. McCabe DL, Vivona MA (1999) Treating process wastewater employing vacuum distillation using mechanical vapor recompression. Environ Prog 18(1):30–33

    CAS  CrossRef  Google Scholar 

  8. Schmal JP, Van der Kooi HJ, De Rijke A et al (2006) Internal versus external heat integration operational and economic analysis. Chem Eng Res Des 84(A5):374–380. doi:10.1205/cherd05041

    CAS  CrossRef  Google Scholar 

  9. Alcántara-Avila JR, Gómez-Castro FI, Segovia-Hernández JG et al (2014) Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation. Chem Eng Process 82:112–122. doi:10.1016/j.cep.2014.06.006

    CrossRef  Google Scholar 

  10. Seider WD, Seader JD, Lewin DR, Widagdo S (2010) Product and process design principles: synthesis, analysis, and evaluation. Wiley, Asia

    Google Scholar 

  11. IEA (2012) Energy balances of non-OECD countries 2012. OECD, Paris, http://dx.doi.org/10.1787/energy_bal_non-oecd-2012-en

    Google Scholar 

  12. Ministry of Economy, Trade and Industry (2014) Nihon no enerugi 2014 (The energy in Japan 2014). http://www.enecho.meti.go.jp/about/pamphlet/pdf/energy_in_japan2014.pdf. Accessed 24 Feb 2015

  13. Shenvi AA, Herron DM, Agrawal R (2011) Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation. Ind Eng Chem Res 50(1):119–130. doi:10.1021/ie101698f

    CAS  CrossRef  Google Scholar 

  14. Mah RSH, Nicholas JJ, Wodnik RB (1977) Distillation with secondary Reflux and vaporization: a comparative evaluation. AIChE J 23:651–657

    CAS  CrossRef  Google Scholar 

  15. Nakaiwa M, Huang K, Endo A et al (2003) Internally heat-integrated distillation columns: a review. Chem Eng Res Des 81(1):162–177. doi:10.1205/026387603321158320

    CAS  CrossRef  Google Scholar 

  16. Ho TJ, Huang CT, Lee LS et al (2010) Extended Ponchon-Savarit method for graphically analyzing and designing internally heat-integrated distillation columns. Ind Eng Chem Res 49(1):350–358. doi:10.1021/ie9005468

    CAS  CrossRef  Google Scholar 

  17. Shahandeh H, Ivakpour J, Kasiri N (2014) Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm. Energy 64(1):875–886. doi:10.1016/j.energy.2013.10.042

    CAS  CrossRef  Google Scholar 

  18. Suphanit B (2010) Design of internally heat-integrated distillation column (HIDiC): uniform heat transfer area versus uniform heat distribution. Energy 35(3):1505–1514. doi:10.1016/j.energy.2009.12.008

    CAS  CrossRef  Google Scholar 

  19. Olujic Z, Fakhri F, de Rijke A et al (2003) Internal heat integration—the key to an energy-conserving distillation column. J Chem Technol Biotechnol 78(2–3):241–248. doi:10.1002/jctb.761

    CAS  CrossRef  Google Scholar 

  20. Olujic Z, Sun L, de Rijke A et al (2006) Conceptual design of an internally heat integrated propylene-propane splitter. Energy 31(15):3083–3096. doi:10.1016/j.energy.2006.03.030

    CAS  CrossRef  Google Scholar 

  21. Olujic Z, Sun L, Gadalla A et al (2008) Enhancing thermodynamic efficiency of energy intensive distillation columns via internal heat integration. Chem Biochem Eng Q 22(4):383–392

    CAS  Google Scholar 

  22. Horiuchi K, Yanagimoto K, Kataoka K (2008) Energy saving characteristics of the internally heat integrated distillation column (HIDiC) pilot plant for multicomponent petroleum distillation. J Chem Eng Jpn 41(8):771–778

    CAS  CrossRef  Google Scholar 

  23. Cabrera-Ruiz J, Jiménez-Gutiérrez A, Segovia-Hernández JG (2011) Assessment of the implementation of heat-integrated distillation columns for the separation of ternary mixtures. Ind Eng Chem Res 50(4):2176–2181. doi:10.1021/ie101939e

    CAS  CrossRef  Google Scholar 

  24. Kataoka K, Noda H (2014) Naibu netsukokan Shiki jyoryuto (HIDiC) no gijutsu Kaihatsu (technological development of internal heat-integrated distillation column (HIDiC)). Synthesiology 7(3):163–178

    CrossRef  Google Scholar 

  25. Ho TJ, Huang CT, Lin JM et al (2009) Dynamic simulation for internally heat-integrated distillation columns (HIDiC) for propylene–propane system. Comput Chem Eng 33:1187–1201. doi:10.1016/j.compchemeng.2009.01.004

    CAS  CrossRef  Google Scholar 

  26. Huang K, Shan L, Zhu Q et al (2007) Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture. Energy 32(11):2148–2156. doi:10.1016/j.energy.2007.04.007

    CAS  CrossRef  Google Scholar 

  27. Kano M, Fukushima T, Makita H et al (2007) Multiple steady-states in a heat integrated distillation column (HIDiC). J Chem Eng Jpn 40(10):824–831. doi:10.1252/jcej.06WE278

    CAS  CrossRef  Google Scholar 

  28. Wakabayashi T, Hasebe S (2011) Naibu netsukokan gata jyoryuto (HIDiC) ni okeru naibu netsukokan ryobunpu no shoenerugi Seino ni ataeru ekyo (effect of internal heat exchange rate distribution on energy saving in heat integrated distillation column (HIDiC)). Kagaku Kogaku Ronbunshu 37(6):499–505

    CAS  CrossRef  Google Scholar 

  29. Wakabayashi T, Hasebe S (2013) Design of heat integrated distillation column by using H-xy and T-xy diagrams. Comput Chem Eng 56:174–183. doi:10.1016/j.compchemeng.2013.05.020

    CAS  CrossRef  Google Scholar 

  30. Mane A, Jana AK (2010) A new intensified heat integration in distillation column. Ind Eng Chem Res 49(19):9534–9541. doi:10.1021/ie100942p

    CAS  CrossRef  Google Scholar 

  31. Kiran B, Jana AK, Samanta AN (2012) A novel intensified heat integration in multicomponent distillation. Energy 41(1):443–453. doi:10.1016/j.energy.2012.02.055

    CAS  CrossRef  Google Scholar 

  32. Taseibunkei naibu-netsukokanshiki joryu-sochi (Internal heat integrated distillation system for multi-component distillation). Patent No. 4819756

    Google Scholar 

  33. Kataoka K, Noda H, Yamaji H et al (2009) A compressor-free HIDIC system for recovery of waste solvent mixtures. Paper presented at 8th World Congress of chemical engineering, Montreal, Canada, 23–27 August 2009

    Google Scholar 

  34. Kataoka K, Noda H, Yamaji H et al (2009) Heat transfer and flow characteristics of a double-tube HIDiC trayed column. Paper presented at 8th World Congress of chemical engineering, Montreal, Canada, 23–27 August 2009

    Google Scholar 

  35. Zhang X, Huang K, Chen H et al (2011) Comparing three configurations of the externally heat-integrated double distillation columns (EHIDDiCs). Comput Chem Eng 35(10):2017–2033. doi:10.1016/j.compchemeng.2010.11.008

    CAS  CrossRef  Google Scholar 

  36. Miyazaki A, Alcántara-Avila JR, Sotowa KI, Horikawa T (2014) Trade-off assessment between controllability and energy savings in internally and externally heat integrated distillation structures. Paper presented at the 5th international symposium on advanced control of industrial processes, Hiroshima, Japan, 28–30 May 2014

    Google Scholar 

  37. Alcántara-Avila JR, Sotowa KI, Horikawa T (2014) Iterative procedure for updating the temperature profile in distillation columns with heat-integrated stages. Paper presented at 10th international conference on separation science and technology (ICSST14), Nara, Japan, 30 October–1 November 2014

    Google Scholar 

  38. Alcántara-Avila JR, Hasebe S (2013) Hierarchical synthesis procedure of optimal distillation sequences with internal and external heat integrations. Paper presented at 9th World Congress of chemical engineering, Seoul, South Korea, 18–23 August 2014

    Google Scholar 

  39. Malone MF, Doherty MF (2000) Reactive distillation. Ind Eng Chem Res 39:3953–3957

    CAS  CrossRef  Google Scholar 

  40. Luyben WL, Yu CC (2008) Reactive distillation design and control. Wiley, Hoboken

    CrossRef  Google Scholar 

  41. Sundmacher K, Kienle A (eds) (2003) Reactive distillation: status and future directions. Wiley-VCH Verlag CmbH & Co. KgaA, Weiheim, Germany

    Google Scholar 

  42. Lin YD, Chen JH, Cheng JK et al (2008) Process alternatives for methyl acetate conversion using reactive distillation. 1. Hydrolysis. Chem Eng Sci 63(6):1668–1682. doi:10.1016/j.ces.2007.11.009

    CAS  CrossRef  Google Scholar 

  43. Lin YD (2012) Design and control of a reactive distillation process for methyl acetate hydrolysis. Dissertation, Master thesis, National Taiwan University

    Google Scholar 

  44. Lee HY, Lee YC, Chien IL, Huang HP (2010) Design and control of a heat integrated reactive distillation system for the hydrolysis of methyl acetate. Ind Eng Chem Res 49:7398–7411. doi:10.1021/ie9016754

    CAS  CrossRef  Google Scholar 

  45. Pöpken T, Götze L, Gmehling J (2000) Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis. Ind Eng Chem Res 39(7):2601–2611. doi:10.1021/ie000063q

    CrossRef  Google Scholar 

  46. Pöpken T, Steinigeweg S, Gmehling J (2001) Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: experiments and simulation. Ind Eng Chem Res 40(6):1566–1574. doi:10.1021/ie0007419

    CrossRef  Google Scholar 

  47. Hayden JG, O’Connell JP (1975) A generalized method for predicting second virial coefficients. Ind Eng Chem Process Des Dev 14(3):209–216. doi:10.1021/i260055a003

    CAS  CrossRef  Google Scholar 

  48. Tang YT, Chen YW, Huang HP et al (2005) Design of reactive distillations for acetic acid esterification with different alcohols. AIChE J 51(6):1683–1699. doi:10.1002/aic.10519

    CAS  CrossRef  Google Scholar 

  49. Lai IK, Liu YC, Yu CC et al (2008) Production of high-purity ethyl acetate using reactive distillation: experimental and start-up procedure. Chem Eng Process 47(9–10):1831–1843. doi:10.1016/j.cep.2007.10.008

    CAS  CrossRef  Google Scholar 

  50. Lee HY, Lai IK, Huang HP, Chien IL (2012) Design and control of thermally coupled reactive distillation for the production of isopropyl acetate. Ind Eng Chem Res 51:11753–11763. doi:10.1021/ie300647h

    CAS  CrossRef  Google Scholar 

  51. Gadewar SB, Malone MF, Doherty MF (2002) Feasible region for a countercurrent cascade of vapor-liquid CSTRS. AIChE J 48(4):800–814. doi:10.1002/aic.690480414

    CAS  CrossRef  Google Scholar 

  52. Sander S, Flisch C, Geissler E, Schoenmakers H et al (2007) Methyl acetate hydrolysis in a reactive divided wall column. Chem Eng Res Des 85(1):149–154. doi:10.1205/cherd06106

    CAS  CrossRef  Google Scholar 

  53. Douglas JM (1998) Conceptual design of chemical processes. McGraw-Hill, New York

    Google Scholar 

  54. Tedder DW, Rudd DF (1978) Parametric studies in industrial distillation: part 1 design comparisons. AIChE J 24:303–315. doi:10.1002/aic.690240220

    CAS  CrossRef  Google Scholar 

  55. Luyben WL (2008) Design and control of a fully heat-integrated pressure-swing azeotropic distillation system. Ind Eng Chem Res 47(8):2681–2695. doi:10.1021/ie071366o

    CAS  CrossRef  Google Scholar 

  56. Horsley LH (1973) Azeotropic data—III, Advances in chemistry series no.116. American Chemical Society, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rafael Alcántara-Avila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alcántara-Avila, J.R., Lee, HY. (2016). Heat-Integrated Intensified Distillation Processes. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_5

Download citation