Skip to main content

Process Intensification in the Production of Liquid Biofuels: Strategies to Minimize Environmental Impact

Abstract

Process intensification is a branch of Chemical Engineering which has taken importance in the last decades, because through its application it is possible to obtain alternative processes with smaller/multitask equipment and reduced energy requirements. Such reductions may have a positive benefit to the environment, since smaller equipment implies less use of material for its construction; while reductions on energy requirements imply lowering direct emissions of greenhouse gases to the atmosphere. In this contribution, examples of intensification alternatives recently proposed for enhancement of processes is presented. In particular, process intensification in the production of liquid biofuels is analyzed. The application of such tool in the production of biofuels, which are expected to reduce environmental impact when compared to the use of fossil fuel, has both energy savings and further reductions in terms of pollutant emissions.

Keywords

  • Sulfated Zirconia
  • Process Intensification
  • Extractive Distillation
  • Reactive Distillation
  • Liquid Biofuel

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28392-0_10
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28392-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6

References

  1. Goldstone JA (2010) The new population bomb: the four megatrends that will change the world. http://www.foreignaffairs.com/articles/65735/jack-a-goldstone/the-new-population-bomb. Accessed 8 Dec 2014

  2. Environmental Protection Agency (2014) Climate change science overview. http://www.epa.gov/climatechange/science/overview.html. Accessed 10 Dec 2014

  3. Riebeek H (2010) Global warming. http://earthobservatory.nasa.gov/Features/GlobalWarming/printall.php. Accessed 10 Dec 2014

  4. Energy Information Administration (2014) International energy statistics. http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm. Accessed 11 Dec 2014

  5. Altin R, Cetinkaya S, Yücesu HS (2001) The potential of using vegetable oil fuels as fuel for diesel engines. Energy Convers Manage 42:529–538

    CAS  CrossRef  Google Scholar 

  6. Schobert HH (2013) Chemistry of fossil fuels and biofuels. Cambridge University Press, New York

    CrossRef  Google Scholar 

  7. Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology. McGraw-Hill, New York

    Google Scholar 

  8. Boucher MB, Weed C, Leadbeater NE et al (2009) Pilot scale two-phase continuous flow biodiesel production via novel laminar flow reactor-separator. Energy Fuels 23:2750–2756

    CAS  CrossRef  Google Scholar 

  9. Somnuk K, Smithmaitrie P, Prateepchaikul G (2013) Two stages continuous process of methyl ester from high free fatty acid mixed crude palm oil using static mixer coupled with high-intensity of ultrasound. Energy Convers Manage 75:302–310

    CAS  CrossRef  Google Scholar 

  10. Qiu Z, Zhao L, Weatherley L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Process 49:323–330

    CAS  CrossRef  Google Scholar 

  11. Wen Z, Yu X, Tu ST et al (2009) Intensification of biodiesel synthesis using zigzag micro-channel reactors. Bioresour Technol 100:3054–3060

    CAS  CrossRef  Google Scholar 

  12. Dai JY, Li DY, Zhao YC et al (2014) Statistical optimization for biodiesel production from soybean oil in a microchannel reactor. Ind Eng Chem Res 53:9325–9330

    CAS  CrossRef  Google Scholar 

  13. Schürer J, Thiele R, Wiborg O et al (2014) Synthesis of biodiesel in microstructures reactors under supercritical reaction conditions. Chem Eng Trans 37:541–546

    Google Scholar 

  14. Kiss AA, Bildea CS (2012) A review of biodiesel production by integrated reactive separation technologies. J Chem Technol Biotechnol 87:861–879

    CAS  CrossRef  Google Scholar 

  15. Dube MA, Tremblay AY, Liu J (2007) Biodiesel production using a membrane reactor. Bioresour Technol 98:639–647

    CAS  CrossRef  Google Scholar 

  16. Machsun AL, Gozan M, Nasikin M et al (2010) Membrane microreactor in biocatalytic transesterification of triolein for biodiesel production. Biotechnol Bioprocess Eng 15:911–916

    CAS  CrossRef  Google Scholar 

  17. Baroutian S, Aroua MK, Raman AAA et al (2011) A packed bed membrane reactor for production of biodiesel using activate carbon supported catalyst. Bioresour Technol 102:1095–1102

    CAS  CrossRef  Google Scholar 

  18. Shi W, He B, Cao Y et al (2013) Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies. Bioresour Technol 129:100–107

    CAS  CrossRef  Google Scholar 

  19. Kiss AA, Omota F, Dimian AC et al (2006) The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top Catal 40:141–150

    CAS  CrossRef  Google Scholar 

  20. Kiss AA, Dimian AC, Rothenberg G (2008) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22:598–604

    CAS  CrossRef  Google Scholar 

  21. Kiss AA (2011) Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process Technol 92:1288–1296

    CAS  CrossRef  Google Scholar 

  22. de Lima da Silva N, Garcia Santander CM, Batistella CB et al (2010) Biodiesel production from integration between reaction and separation system: reactive distillation process. Appl Biochem Biotechnol 161:245–254

    CrossRef  Google Scholar 

  23. Xie W, Ma N (2009) Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels 23:1347–1353

    CAS  CrossRef  Google Scholar 

  24. Dussan KJ, Cardona CA, Giraldo OH et al (2010) Analysis of a reactive extraction process for biodiesel production using a lipase immobilized on magnetic nanostructures. Bioresour Technol 101:9542–9549

    CAS  CrossRef  Google Scholar 

  25. Robles-Medina A, González-Moreno PA, Esteban-Cerdán L et al (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408

    CAS  CrossRef  Google Scholar 

  26. Gómez-Castro FI, Rico-Ramírez V, Segovia-Hernández JG et al (2013) Simulation study on biodiesel production by reactive distillation with methanol at high pressure and temperature: impact on costs and pollutant emissions. Comput Chem Eng 52:204–215

    CrossRef  Google Scholar 

  27. Kiss AA (2009) Novel process for biodiesel by reactive absorption. Sep Purif Technol 69:280–287

    CAS  CrossRef  Google Scholar 

  28. Kiss AA, Bildea CS (2011) Integrated reactive absorption process for synthesis of fatty esters. Bioresour Technol 102:490–498

    CAS  CrossRef  Google Scholar 

  29. Kiss AA, Pragt JJ, van Strien CJG (2009) Reactive dividing-wall column—how to get more with less resources? Chem Eng Commun 196:1366–1374

    CAS  CrossRef  Google Scholar 

  30. Kiss AA, Pragt JJ, van Strien CJG (2009) Reactive dividing-wall column—defying equilibrium restrictions. Chem Prod Process Model 4:1–13

    Google Scholar 

  31. Miranda-Galindo EY, Segovia-Hernández JG, Hernández S et al (2011) Reactive thermally coupled distillation sequences: Pareto front. Ind Eng Chem Res 50:926–938

    CAS  CrossRef  Google Scholar 

  32. Kiss AA, Segovia-Hernández JG, Bildea CS et al (2012) Reactive DWC leading the way to FAME and fortune. Fuel 95:352–359

    CAS  CrossRef  Google Scholar 

  33. Kiss AA, Ignat RM (2012) Enhanced methanol recovery and glycerol separation in biodiesel production—DWC makes it happen. Appl Energy 99:146–153

    CAS  CrossRef  Google Scholar 

  34. Karuppiah R, Peschel A, Grossmann IE et al (2008) Energy optimization for the design of corn-based ethanol plants. AIChE J 54:1499–1525

    CAS  CrossRef  Google Scholar 

  35. Prasad S, Singh A, Jain N et al (2007) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuels 21:2415–2420

    CAS  CrossRef  Google Scholar 

  36. Martinez-Hernandez E, Sadhukhan J, Campbell GM (2013) Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis. Appl Energy 104:517–526

    CAS  CrossRef  Google Scholar 

  37. John RP, Anisha GS, Madhavan Nampoothiri K et al (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    CAS  CrossRef  Google Scholar 

  38. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    CAS  CrossRef  Google Scholar 

  39. Martinez Avilés A, Saucedo-Luna J, Segovia-Hernandez JG et al (2012) Dehydration of bioethanol by hybrid process liquid-liquid extraction/extractive distillation. Ind Eng Chem Res 51:5847–5855

    CrossRef  Google Scholar 

  40. Frolkova AK, Raeva VM (2010) Bioethanol dehydration: state of the art. Theor Found Chem Eng 44:545–556

    CAS  CrossRef  Google Scholar 

  41. Gil ID, Gómez JM, Rodríguez G (2012) Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer. Comput Chem Eng 39:129–142

    CAS  CrossRef  Google Scholar 

  42. Vázquez-Ojeda M, Segovia-Hernández JG, Hernández S et al (2013) Design and optimization of an ethanol dehydration process using stochastic methods. Sep Purif Technol 105:90–97

    CrossRef  Google Scholar 

  43. Teramoto Y, Tanaka N, Lee SH et al (2008) Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnol Bioeng 99:75–85

    CAS  CrossRef  Google Scholar 

  44. Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Biotechnol Technol 99:8856–8863

    CAS  Google Scholar 

  45. Inoue H, Yano S, Endo T et al (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels 1:2

    CrossRef  Google Scholar 

  46. Ha SH, Mai NL, An G et al (2011) Microwave-assisted pretreatment of cellulose in ionic liquid or accelerated enzymatic hydrolysis. Bioresour Technol 102:1214–1219

    CAS  CrossRef  Google Scholar 

  47. Ben Chaabane MF (2006) Intensification de la production d’éthanol biocarburant dans un bioréacteur bi-étagé avec recyclage cellulaire: Modélisation et Stratégie de conduite. Dissertation, L’Institut National des Sciences Appliqueés de Touluse

    Google Scholar 

  48. Masuda H, Horie T, Hubacz R et al (2012) Process intensification of continuous starch hydrolysis with a Taylor-Couette flow reactor. In: Proceedings of the 14th European conference on mixing, Warszaw, Poland, 10-13 September 2012

    Google Scholar 

  49. Ikwebe J (2012) Intensification of bioethanol production by simultaneous saccharification and fermentation in an oscillatory baffled reactor. Dissertation, Newcastle University

    Google Scholar 

  50. Ballesteros M, Oliva JM, Negro MJ et al (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    CAS  CrossRef  Google Scholar 

  51. Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828

    CAS  CrossRef  Google Scholar 

  52. Novy V, Krahulec S, Wegleiter M et al (2014) Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 7:49

    CrossRef  Google Scholar 

  53. Pacheco-Basulto JA, Hernández-McConville D, Barroso-Muñoz FO et al (2012) Purification of bioethanol using extractive batch distillation: simulation and experimental studies. Chem Eng Process 61:30–35

    CAS  CrossRef  Google Scholar 

  54. Errico M, Rong BG (2012) Synthesis of new separation processes for bioethanol production by extractive distillation. Sep Purif Technol 96:58–67

    CAS  CrossRef  Google Scholar 

  55. Errico M, Rong BG, Tola G et al (2013) Optimal synthesis of distillation systems for bioethanol separation. Part 2. Extractive distillation with complex columns. Ind Eng Chem Res 52:1620–1626

    CAS  CrossRef  Google Scholar 

  56. Segovia-Hernandez JG, Vázquez-Ojeda M, Gómez-Castro FI et al (2014) Process control analysis for intensified bioethanol separation systems. Chem Eng Process 75:119–125

    CAS  CrossRef  Google Scholar 

  57. Kiss AA, Ignat RM (2012) Innovative single step bioethanol dehydration in an extractive dividing wall column. Sep Purif Technol 98:290–297

    CAS  CrossRef  Google Scholar 

  58. Kiss AA, Suszwalak DJPC (2012) Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing wall columns. Sep Purif Technol 86:70–78

    CAS  CrossRef  Google Scholar 

  59. Tavan Y, Hosseini SH (2013) A novel integrated process to break the ethanol/water azeotrope using reactive distillation—part I: parametric study. Sep Purif Technol 118:455–462

    CAS  CrossRef  Google Scholar 

  60. Chevron (2000) Aviation fuels: technical review. Chevron Product Company, Chevron U.S.A. Inc.

    Google Scholar 

  61. Agosta A (2002) Development of a chemical surrogate for JP-8 aviation fuel using a pressurized flow reactor. Dissertation, Drexel University

    Google Scholar 

  62. International Air Transportation Association (2013) IATA 2013 report on alternative fuels, Montreal-Geneva

    Google Scholar 

  63. Gutiérrez-Antonio C, Gómez-Castro FI, Hernández S et al (2015) Intensification of a hydrotreating process to produce biojet fuel using thermally coupled distillation. Chem Eng Process 88:29–36

    CrossRef  Google Scholar 

  64. Sinha AK, Sibi MG, Naidu N et al (2014) Process intensification for hydroprocessing of vegetable oils: experimental study. Ind Eng Chem Res 53:19062–19070

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando I. Gómez-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez-Castro, F.I., Cano-Rodríguez, I., Gamiño-Arroyo, Z. (2016). Process Intensification in the Production of Liquid Biofuels: Strategies to Minimize Environmental Impact. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_10

Download citation