Skip to main content

Efficacy of Natural Compounds in Neurodegenerative Disorders

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

Neurodegenerative disorders represent clusters of serious diseases that results in progressive deterioration of normal structure and physiology of central nervous system. Pathophysiology of Alzheimer’s, Parkinson’s or other neurodegenerative disorders involves multifaceted permutation of genetic and environmental factors. Combinations of lifestyle modification linked with environmental factor jointly or alone represent the largest share of cases of these disorders. Etiology of such neuronal degeneration involves manifestation of toxic reaction in the form of functional anomalies leading to dysfunction of the ubiquitin–proteasome system, activated inflammatory cascade, compromised neuronal survival pathway, mitochondrial dysfunction and finally neuronal apoptosis/necrosis and cell death. Furthermore, evidences from various studies exhibited role of oxidative stress and compromised anti-oxidant defense system as one of the prime factors associated with activation of various signal transduction pathways that would ultimately lead to the formation of amyloid beta or alpha synuclein in the brain. Keeping in view of complex etiology and pathophysiology along with a miniscule of available treatment options associated with these neurodegenerative disorders, the role of natural agents and herbal extracts as therapeutic alternatives alone or in combination with synthetic drugs could not be ruled out. In the same context the present chapter has been aimed to investigate the role of selected natural plants like Withania somnifera, Bacopa monnieri, Curcuma longa, Centella asiatica, Ocimum sanctum, Nardostachys jatamansi and Emblica officinalis in various neurodegenerative disorders and explore their targets to ameliorate neurotoxicity in various experimental models. The rationale for selection of these plants was based on their strong anti-inflammatory and anti-oxidant potential and large body of evidence that suggest their efficacy in preclinical as well as in clinical studies. Active constituents if these herbals might play an important role in preserving the integrity of various neurotransmitters and their receptor in the brain influencing its functions at the molecular level.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi K, Yimen Y, Satake K, Matsuyama Y, Ishiguro N, Sawada M, Hirata Y, Kiuchi K. Localization of cyclooxygenase-2 induced following traumatic spinal cord injury. J Neurosci Res. 2005;51:73–80.

    Article  CAS  Google Scholar 

  • Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565–75.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age old spice with modern targets. Trends Pharmacol Sci. 2009;30(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  • Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16(4):313–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol. 2005;24(3):137–47.

    Article  PubMed  Google Scholar 

  • Ahmad M, Yousuf S, Khan BM. Attenuation by Nardostachys jatamansi of 6 hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav. 2006;83(1):150–60.

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Saraf MK, Prabhakar S. Antiamnesic effect of B. monniera on L-NNA induced amnesia involves calmodulin. Neurochem Res. 2010;35(8):1172–81.

    Article  CAS  PubMed  Google Scholar 

  • Anbarsi K, et al. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci. 2006;78:12.

    Google Scholar 

  • Anila L, Vijayalakshmi NR. J Ethnopharmacol. 2002;79:81–7.

    Article  CAS  PubMed  Google Scholar 

  • Atta-ur-Rahman, Jamal AS, Choudary MI, Asif I. Two withanolides from Withania somnifera. Phytochemistry. 1991;30:3824–5.

    Article  CAS  Google Scholar 

  • Atta-ur-Rahman, Abbas S, Dur-e-Shawar, Jamal AS, Choudhary MI. New withanolides from Withania spp. J Nat Prod. 1993;56:1000–6.

    Article  CAS  Google Scholar 

  • Baltazar MT, Dinis-Oliveira RJ, de Lourdes BM, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach. Toxicol Lett. 2014;230(2):85–103.

    Article  CAS  PubMed  Google Scholar 

  • Balanehru S, Nagarajan B. Intervention of adriamycin induced radical damage. Biochem Int. 1992;28:735–44.

    CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res. 2000a;14:174–9.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Kumar A, Ghosal S. Effect of Bacopa monniera on animal models of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. In: Siva Sankar DV, editor. Molecular aspects of Asian medicines. New York: PJD; 2000b.

    Google Scholar 

  • Bhattacharya SK, Bhattacharya D, Sairam K, Ghosal S. Effect of Withania somnifera glycowithanolides on a rat model of tardive dyskinesia. Phytomedicine. 2002;9:167–70.

    Article  CAS  PubMed  Google Scholar 

  • Bigford GE, Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr. 2014;5(4):394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav. 2008;88(4):511–22.

    Article  CAS  PubMed  Google Scholar 

  • Bollimpelli VS, Kumar P, Kumari S, Kondapi AK. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int. 2016;95:37–45. doi:10.1016/j.neuint.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty AK, Sarkar T, Masuda K, Shiojima K, Nakane T, Kawahara N. Bacopa side I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry. 2001;58:553–6.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty AK, Garai S, Masuda K, Nakane T, Kawahara N. Bacopasides III–V: three new triterpenoid glycosides from Bacopa monniera. Chem Pharm Bull. 2003;51:215–7.

    Article  CAS  PubMed  Google Scholar 

  • Chan PH, Fishman RA, Wesley MA, Longar S. Pathogenesis of vasogenic edema in focal cerebral ischemia. Role of superoxide radicals. Adv Neurol. 1990;52:177–83.

    CAS  PubMed  Google Scholar 

  • Chan S, Kantham S, Rao VM, Palanivelu MK, Pham HL, Shaw PN, McGeary RP, Ross BP. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to Alzheimer's disease. Food Chem. 2016;199:185–94.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Basak B, Saha M, et al. Structure and stereo-chemistry of Nardostachysin, a new terpenoid ester constituent of the rhizomes of Nardostachys Jatamansi. J Nat Prod. 2000;63(11):1531–3.

    Article  CAS  PubMed  Google Scholar 

  • Chatterji A, Prakashi SC. The treatise on Indian medicinal plants, vol 5. New Delhi: National Institute of Science Communication (Publication and Information Directorate); 1997.

    Google Scholar 

  • Chaudhary G, Sharma U, Jagannathan NR, Gupta YK. Evaluation of Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. Clin Exp Pharmacol Physiol. 2003;30(5–6):399–404.

    Article  CAS  PubMed  Google Scholar 

  • Cheng CL, Guo JS, Luk J, Koo MWL. The healing effects of Centella extract and asiaticoside on acetic acid induced gastric ulcers in rats. Life Sci. 2004;74:2237–49.

    Article  CAS  PubMed  Google Scholar 

  • Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23:1261–76.

    Article  CAS  PubMed  Google Scholar 

  • Choudary MI, Abbas S, Jamal AS, Atta-ur-Rahman. Withania somnifera—a source of exotic withanolides. Heterocycles. 1996;42:555–63.

    Article  Google Scholar 

  • Choudhary MI, Yousuf S, Nawaz SA, Ahmed S. Cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull (Tokyo). 2004;52(11):1358–61.

    Article  CAS  Google Scholar 

  • Cui Q, Li X, Zhu H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep. 2016;13(2):1381–8.

    CAS  PubMed  Google Scholar 

  • Das A, Shanker G, Nath C, Pal R, Singh S, Singh H. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav. 2002;73:893–900.

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 2007;282(15):11590–601.

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, Manyam BV. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res. 2009;23:14–9.

    Article  PubMed  Google Scholar 

  • Dhawan BN, Singh HK. Pharmacology of ayurvedic nootropic Bacopa monniera, Abstr. No. NR 59. Int Conv Biol Psychiat. Bombay; 1996.

    Google Scholar 

  • Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angew Chem Int Ed Engl. 2012;51(22):5308–32.

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Zhuang W, Zhou S, Wang X. Plant-derived neuroprotective agents in Parkinson's disease. Am J Transl Res. 2015;7(7):1189–202.

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007;102:1095–104.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol. 2015;83:111–24.

    Article  CAS  PubMed  Google Scholar 

  • Gim SA, Lee SR, Shah FA, Koh PO. Curcumin attenuates the middle cerebral artery occlusion-induced reduction in γ-enolase expression in an animal model. Lab Anim Res. 2015;31(4):198–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosal S, Tripathi VK, Chauhan S. Active constituents of Emblica officinalis: part 1—the chemistry and antioxidant effects of two new hydrolysable tannins, emblicanin A and B. Indian J Chem. 1996;35B:941–8.

    CAS  Google Scholar 

  • Gnanapragasam A, Kumar Ebenezar K, Sathish V, Govindaraju P, Devaki T. Protective effect of Centella asiatica on antioxidant tissue defense system against adriamycin induced cardiomyopathy in rats. Life Sci. 2004;76:585–97.

    Article  CAS  PubMed  Google Scholar 

  • Grace EA, Rabiner CA, Busciglio J. Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer's disease. Neuroscience. 2002;114(1):265–73.

    Article  CAS  PubMed  Google Scholar 

  • Grandhi A, Mujumdar AM, Patwardhan B. A comparative pharmacological investigation of Ashwagandha and Ginseng. J Ethnopharmacol. 1994;44(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  • Gruart A, Munoz MD, Delgado-Garcia JM. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci. 2006;26:1077–87.

    Article  CAS  PubMed  Google Scholar 

  • Hakkim FL, Shankar CG, Girija S. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. J Agric Food Chem. 2007;55(22):9109–17. Epub 2007 Oct 9.

    Article  CAS  PubMed  Google Scholar 

  • Haleagrahara N, Ponnusamy K. Neuroprotective effect of centialla asiatica extract on experimentally induced Parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci. 2010;35(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  • Handa SS, Deepak M, Mangal AK. Centella asiatica. Indian herbal pharmacopoeia. Indian drug manufacturer. Jammu-Tawi, India: Mumbai and Regional Res. Lab; 1988. p. 47–55.

    Google Scholar 

  • Harney SC, Rowan M, Anwyl R. Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci. 2006;26:1128–32.

    Article  CAS  PubMed  Google Scholar 

  • Hosamani R. Muralidhara. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology. 2009;30(6):977–85.

    Article  CAS  PubMed  Google Scholar 

  • Hosamani R. Muralidhara. Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster. Indian J Biochem Biophys. 2010;47(2):75–82.

    CAS  PubMed  Google Scholar 

  • Hou CC, Lin SJ, Cheng JT, Hsu FL. Bacopaside III, bacopasaponin G, and bacopasides A, B, and C from Bacopa monniera. J Nat Prod. 2002;65:1759–63.

    Article  CAS  PubMed  Google Scholar 

  • Jadiya P, Khan A, Sammi SR, Kaur S, Mir SS, Nazir A. Anti-Parkinsonian effects of Bacopa monnieri: insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson's disease. Biochem Biophys Res Commun. 2011;413:605–10.

    Article  CAS  PubMed  Google Scholar 

  • Jew SS, Yoo CH, Lim DY, Kim H, Mook-Jung I, Jung MW, Choi H, Jung YH, Kim H, Park HG. Structure–activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Bioorg Med Chem Lett. 2000;10:119–21.

    Article  CAS  PubMed  Google Scholar 

  • Joshi H, Parle M. Nardostachys jatamansi improves learning and memory in mice. J Med Food. 2006;9(1):113–8.

    Article  PubMed  Google Scholar 

  • Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T, Mohamed EM. Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer's disease. Nutr Neurosci. 2016;19:269–78 [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  • Khattak S, Saeed-Ur-Rehman, Shah HU, Khan T, Ahmad M. In vitro enzyme inhibition activities of crude ethanolic extracts derived from medicinal plants of Pakistan. Nat Prod Res. 2005;19(6):567–71.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy RG, Senut M-C, Zemke D, Min J, Frenkel MB, Greenberg EJ, Yu S-W, Ahn N, Goudreau J, Kassab M, Panickar KS, Majid A. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J Neurosci Res. 2009;87(11):2541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kritikar KR, Basu BD. Indian medicinal plants. 2nd ed. New Delhi: Periodical Export; 1991. p. 488–90.

    Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Aβ(25–35)-induced neurodegeneration. Eur J Neurol. 2006;23(6):1417–26.

    Google Scholar 

  • Kulkarni SK, Dhir A. Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1093–105.

    Article  CAS  PubMed  Google Scholar 

  • Kumar VP, Chauhan NS, Padh H, Rajani M. Search for antibacterial and antifungal agents from selected Indian, medicinal plants. J Ethnopharmacol. 2006;107:182.

    Article  PubMed  Google Scholar 

  • Kumar A, Dogra S, Prakash A. Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimer’s Dis. 2009;2009:972178.

    Google Scholar 

  • Langston JW. The impact of MPTP on Parkinson’s disease research: past, present, and future. In: Factor SA, Weiner WJ, editors. Parkinson’s disease. Diagnosis and clinical management. New York: Demos Medical Publishing; 2002.

    Google Scholar 

  • Lanni C, Lenzken SC, Pascal A. Pharmacol Res. 2008;57:196–213.

    Article  CAS  PubMed  Google Scholar 

  • Le XT, Nguyet Pham HT, Van Nguyen T, Minh Nguyen K, Tanaka K, Fujiwara H, Matsumoto K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism. J Ethnopharmacol. 2015;164:37–45.

    Article  PubMed  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370–7.

    CAS  PubMed  Google Scholar 

  • Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol. 2008;120(1):112–7.

    Article  PubMed  Google Scholar 

  • Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, Deng Y, Zhang Y, Guo X, Mu J, Yu G. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res. 2014;39(7):1322–31.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zuo P. Effects of Aβ 25−35 on neurogenesis in the adult mouse subventricular zone and dentate gyrus. Neurol Res. 2005;27:218–22.

    Article  CAS  PubMed  Google Scholar 

  • Luo GR, Le WD. Collective roles of molecular chaperones in protein degradation pathways associated with neurodegenerative diseases. Curr Pharm Biotechnol. 2010;11(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules. 2009;14(7):2373–93.

    Article  CAS  PubMed  Google Scholar 

  • Murthy PB, Raju VR, Ramakrisana T, Chakravarthy MS, Kumar KV, Kannababu S, Subbaraju GV. Estimation of twelve bacopa saponins in Bacopa monnieri extracts and formulations by high-performance liquid chromatography. Chem Pharm Bull (Tokyo). 2006;54(6):907–11.

    Article  CAS  Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23 Suppl 3:S548–59.

    Article  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res. 2004;75:742–50.

    Article  CAS  PubMed  Google Scholar 

  • Parrón T, Requena M, Hernández AF, Alarcón R. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol Appl Pharmacol. 2011;256(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci. 2003;4:103–12.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar S, Saraf MK, Pandhi P, Anand A. Bacopa monniera exerts antiamnesic effect on diazepam-induced anterograde amnesia in mice. Psychopharmacology. 2008;200:27–37.

    Article  CAS  PubMed  Google Scholar 

  • Rajasankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol. 2009a;125(3):369–73. Epub 2009 Aug 8.

    Article  CAS  PubMed  Google Scholar 

  • Rajasankar S, Manivasagam T, Surendran S. Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson's disease. Neurosci Lett. 2009b;454(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  • Rajeswari A. Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Eur Rev Med Pharmacol Sci. 2006;10:157–61.

    CAS  PubMed  Google Scholar 

  • Rathore P, Dohare P, Varma S, Ray A, Sharna U, Jaganathanan NR, Ray M. Curcuma Oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain. Neurochem Res. 2008;33(9):1672–82.

    Article  CAS  PubMed  Google Scholar 

  • Rastogi S, Pal R, Kulshreshtha DK. Bacoside A3-a triterpenoid saponin from Bacopa monniera. Phytochemistry. 1994;36:133–7.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443(7113):780–6.

    Article  CAS  PubMed  Google Scholar 

  • Russo F, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine. 2005;12:305–17.

    Article  CAS  PubMed  Google Scholar 

  • Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett. 2007;12(4):473–81.

    Article  CAS  PubMed  Google Scholar 

  • Salim S, Ahmad M, Zafar KS, Ahmad AS, Islam F. Protective effect of Nardostachys jatamansi in rat cerebral ischemia. Pharmacol Biochem Behav. 2003;74(2):481–6.

    Article  CAS  PubMed  Google Scholar 

  • Samson J, Sheeladevi R, Ravindran R. Oxidative stress in brain and antioxidant activity of Ocimum sanctum in noise exposure. Neurotoxicology. 2007;28(3):679–85.

    Article  CAS  PubMed  Google Scholar 

  • Saraf MK, Anand A, Prabhakar S. Scopolamine induced amnesia is reversed by Bacopa monniera through participation of kinase-CREB pathway. Neurochem Res. 2010;35:279–87.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ. Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis. 2001;3(1):75–80.

    CAS  PubMed  Google Scholar 

  • Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC. Anti-ischemic Effect of Curcumin in Rat Brain. Neurochem Res. 2008;33:1036–43.

    Article  CAS  PubMed  Google Scholar 

  • Sembulingam K, Sembulingam P, Namasivayam A. Effect of Ocimum sanctum Linn on the changes in central cholinergic system induced by acute noise stress. J Ethnopharmacol. 2005;96:477–82.

    Article  CAS  PubMed  Google Scholar 

  • Shinomol GK, Ravikumar H, Muralidhara. Prophylaxis with Centella asiatica confers protection to prepubertal mice against 3-nitropropionic-acid-induced oxidative stress in brain. Phytother Res. 2010;24:885–92.

    PubMed  Google Scholar 

  • Singh MK, Yadav SS, Yadav RS, Chauhan A, Katiyar D, Khattri S. Protective effect of Emblica-officinalis in arsenic induced biochemical alteration and inflammation in mice. Springerplus. 2015;4:438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh HK, Srimal RC, Srivastava AK, Garg NK, Dhan BN. Neuropsychopharmacological effects of bacosides A and B. Proceedings of the Fourth Conference on Neurobiology Learning Memory, 1990; Abstract No. 79. Irvine California.

    Google Scholar 

  • Singh M, Murthy V, Ramassamy C. Standardized extracts of Bacopa monniera protect against MPP+− and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways. Toxicol Sci. 2012;125(1):219–32.

    Article  CAS  PubMed  Google Scholar 

  • Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia, part 11: mechanisms of damage and treatment. J Neurosurg. 1992;77:337–54.

    Article  CAS  PubMed  Google Scholar 

  • Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 2009;1802(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  • Singh HK, Dhawan BN. Drugs affecting learning and memory. In: Tandon PN, Bijiani V, Wadhwa S, editors. Lectures in neurobiology, vol. 1. New Delhi: Wiley Eastern; 1992. p. 189–207.

    Google Scholar 

  • Song S, Nie Q, Li Z, Du G. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathol Res Pract. 2016;212(4):247–51.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LK, Dwivedi HN, Pant AB, Khanna VK. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol. 2014;279(3):428–40.

    Article  CAS  PubMed  Google Scholar 

  • Strimpakos AS, Sharma RA. Curcumin: Preventive and Therapeutic properties in laboratory studies and clinical trials. Antioxidant Redox Signaling. 2008;10(3):511–45.

    Article  CAS  Google Scholar 

  • Subathra M, Shila S, Devi MA, Panneerselvam C. Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp Gerontol. 2005;40:707–15.

    Article  PubMed  Google Scholar 

  • Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74:969–85.

    Article  CAS  PubMed  Google Scholar 

  • Tohda C, Tamura T, Komatsu K. Repair of amyloid β(25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003;990:141–7.

    Article  CAS  PubMed  Google Scholar 

  • Tohda C, Matsumoto N, Zou K, Meselhy RM, Komatsu K. Aβ(25–35)-induced memory impairment, axonal atrophy and synaptic loss are ameliorated by M1, a metabolite of protopanaxadiol-type saponins. Neuropsycopharmacology. 2004;29:860–8.

    Article  CAS  Google Scholar 

  • Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. Bacopa monniera Linn. as an antioxidant: mechanism of action. Indian J Exp Biol. 1996;34:523–6.

    CAS  PubMed  Google Scholar 

  • Tupe RS, Sankhe NM, Shaikh SA, Phatak DV, Parikh JU, Khaire AA, Kemse NG. Aqueous extract of some indigenous medicinal plants inhibits glycation at multiple stages and protects erythrocytes from oxidative damage-an in vitro study. J Food Sci Technol. 2015;52(4):1911–23.

    Article  CAS  PubMed  Google Scholar 

  • Tully T, Bourtchouladze R, Scott R. Nat Rev Drug Discov. 2003;2:266–77.

    Article  CAS  Google Scholar 

  • Udupa KN, Singh RH. Clinical and experimental studies on rasayana drugs and panchkarma therapy. New Delhi: Central Council for Research in Ayurveda and Siddha; 1995.

    Google Scholar 

  • Vasudevan M, Parle M. Memory enhancing activity of Anwala churna (Emblica officinalis Gaertn.): an Ayurvedic preparation. Physiol Behav. 2007;16:91.

    Google Scholar 

  • Veerendra Kumar MH, Gupta YK. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol. 2002;79:253–60.

    Article  CAS  PubMed  Google Scholar 

  • Vinutha JP. Acetyl cholinesterase inhibitory activity of methanolic and successive water extracts of Nardostachys jatamansi. Indian J Pharmacol. 2007;23:127–31.

    Google Scholar 

  • Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K, Deepak M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2007;109(2):359–63.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Sun AY, Simonyi A, Jensen MD, et al. Neuroprotective mechanisms of curcumin against cerebral ischemiainduced neuronal apoptosis and behavioral deficits. J Neurosci Res. 2005;82:138–48.

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, Khanna VK. Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol. 2009;240(3):367–76.

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–901.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Tanak T, Iwamoto Y, Yang CR, Kouno I. J Nat Prod. 2000;63:1507–10.

    Article  CAS  PubMed  Google Scholar 

  • Zheng CJ, Qin LP. Chemical components of Centella asiatica and their bioactivities. J Chin Integr Med. 2007;5(3):348–51.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Singh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, P., Yadav, R.S. (2016). Efficacy of Natural Compounds in Neurodegenerative Disorders. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_7

Download citation

Publish with us

Policies and ethics