Skip to main content

Effect of Docosahexaenoic Acid (DHA) on Spinal Cord Injury

Part of the Advances in Neurobiology book series (NEUROBIOL,volume 12)

Abstract

Spinal cord injury (SCI) has become one of the most leading concerns in the past decade. Preclinical and research studies are now ongoing trying to understand the molecular mechanisms and develop treatment strategies for this neurodegenerative condition. In the last decade, researchers have deciphered few of the leading players that play a major role in worsening the condition. But till date none of these have been applied to the clinical treatment of patients with SCI. Here in this chapter I discuss about one of the dietary requirements that could ameliorate the condition of these patients.

Keywords

  • Spinal cord injury
  • DHA
  • Neurodegeneration
  • Neurotrauma
  • Treatment

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28383-8_2
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28383-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29(5):263–71.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cheriyan T, Ryan DJ, et al. Spinal cord injury models: a review. Spinal Cord. 2014;52(8):588–95.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol. 2003;162(2):233–43.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ephraim Y, Annette B, et al. Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr Neurosci. 2002;5(3):149–57.

    CrossRef  CAS  Google Scholar 

  • Figueroa JD, Cordero K, Baldeosingh K. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. J Neurotrauma. 2012;29(3):551–66.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Figueroa JD, Cordero K, et al. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J Neurotrauma. 2013;30(10):853–68.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Furutani A, Ikeda Y, et al. Fish oil accelerates diet-induced entrainment of the mouse peripheral clock via GPR120. PLoS One. 2015;10(7):e0132472.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JCE, Priestley JV, et al. Docosahexaenoic acid, but not eicosapentaenoic acid, reduces the early inflammatory response following compression spinal cord injury in the rat. J Neurochem. 2012;121(5):738–50.

    CrossRef  CAS  PubMed  Google Scholar 

  • Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999;40(3):211–25.

    CrossRef  CAS  PubMed  Google Scholar 

  • Huang WL, King VR, et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain. 2007;130(Pt 11):3004–19.

    CrossRef  CAS  PubMed  Google Scholar 

  • Joseph MS, Ying Z, et al. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS One. 2012;7(7):e41288.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • King VR, Huang WL, et al. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci. 2006;26(17):4672–80.

    CrossRef  CAS  PubMed  Google Scholar 

  • Langston TH, Donald B, et al. Dietary therapy to promote neuroprotection in chronic spinal cord injury. J Neurosurg Spine. 2012;17(2):134–40.

    CrossRef  Google Scholar 

  • Lim S, Lee E, Lee E, Kim S, Cha JH, Choi H, Park W, Choi HK, Ko SH, Kim SH. Docosahexaenoic acid sensitizes colon cancer cells to sulindac sulfide-induced apoptosis. Oncol Rep. 2012;27:2023–30.

    CAS  PubMed  Google Scholar 

  • Lim S-N, Gladman SJ, et al. Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis. 2013;51:104–12.

    CrossRef  CAS  PubMed  Google Scholar 

  • López-Vales RN, Redensek A, et al. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. J Neurosci. 2010;30(9):3220–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, Fullwood S, Hulsebosch CE. The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage->glutamate release->damage->glutamate release-> etc. Brain Res. 2005;1038(1):92–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • McDonald JW, Liu X-Z, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999;5(12):1410–2.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mu X, Azbill RD, Springer JE. Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma. 2000;17(9):773–80.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A. 2004;101(22):8491–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23(1):70–80.

    CrossRef  CAS  PubMed  Google Scholar 

  • Salem Jr N, Litman B, et al. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36(9):945–59.

    CrossRef  CAS  PubMed  Google Scholar 

  • Satkunendrarajah K, Fehlings MG. Do omega-3 polyunsaturated fatty acids ameliorate spinal cord injury?: Commentary on: Lim et al., Improved outcome after spinal cord compression injury in mice treated with docosahexaeonic acid. Exp. Neurol. Jan; 239:13–27. Exp Neurol. 2013;249:104–10.

    CrossRef  CAS  PubMed  Google Scholar 

  • Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg. 2001;94(2):245–56.

    CAS  PubMed  Google Scholar 

  • Tator CH, Benzel EC, editors. Contemporary management of spinal cord injury: from impact to rehabilitation. 2nd ed. Rolling Meadows, IL: American Association of Neurological Surgeons; 2000.

    Google Scholar 

  • Vreugdenhil M, Bruehl C, Voskuyl RA, Kang JX, Leaf A, Wadman WJ. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A. 1996;93(22):12559–63.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward RE, Huang W, et al. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J Neurotrauma. 2010;27(10):1769–80.

    CrossRef  PubMed  Google Scholar 

  • Wells JEA, Hurlbert RJ, et al. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain. 2003;126(Pt 7):1628–37.

    CrossRef  PubMed  Google Scholar 

  • Zhao Y, Calon F, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One. 2011;6(1):e15816.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Tan Z, et al. Docosahexaenoic acid alters Gsα ± localization in lipid raft and potentiates adenylate cyclase. Nutrition. 2015;31(7):1025–30.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

The author declares that he/she has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreyashi Samaddar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samaddar, S. (2016). Effect of Docosahexaenoic Acid (DHA) on Spinal Cord Injury. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_2

Download citation