Skip to main content

Role of Quercetin Benefits in Neurodegeneration

  • Chapter
  • First Online:
The Benefits of Natural Products for Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

Neurodegenerative disorders are often life threatening and hired as an economic burden to the health-care system. Nutritional interventions principally involving polyphenols were practiced to arrest or reverse the age-related health disorders. Flavonoids, a class of dietary polyphenols, are rising to superstardom in preventing brain disorders with their potent antioxidant defense mechanism. Quercetin is a ubiquitous flavonoid reported to have all-natural myriad of health benefits. Citrus fruits, apple, onion, parsley, berries, green tea, and red wine comprise the major dietary supplements of quercetin apart from some herbal remedies like Ginkgo biloba. Appositeness of quercetin in reducing risks of neurodegenerative disorders, cancer, cardiovascular diseases, allergic disorders, thrombosis, atherosclerosis, hypertension, and arrhythmia, to name a few, is attributed to its highly pronounced antioxidant and anti-inflammatory properties. Neurodegeneration, characterized by progressive deterioration of the structure and function of neurons, is crucially accompanied by severe cognitive deficits. Aging is the major risk factor for neurodegenerative disorders in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) being coequal high hands. Oxidative stress and mitochondrial dysfunction are the key players in triggering neurodegeneration. The upsurge of neurodegenerative disorders is always appalling since there exists a paucity in effective treatment practices. Past few years’ studies have underpinned the mechanisms through which quercetin boons the brain health in many aspects including betterment in cognitive output. Undoubtedly, quercetin will be escalating as an arable field, both in scientific research and in pharmacological and clinical applications.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agim ZS, Cannon JR. Dietary factors in the etiology of Parkinson’s disease. Biomed Res Int. 2015;2015:672838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta (1–42): relevance to Alzheimer’s disease. J Nutr Biochem. 2009;20:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Awad HM, Boersma MG, Boeren S, van der Woude H, van Zanden J, van Bladeren PJ, Vervoort J, Rietjens IM. Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system. FEBS Lett. 2002;520:30–4.

    Article  CAS  PubMed  Google Scholar 

  • Beitz JM. Parkinson’s disease: a review. Front Biosci (School Ed). 2014;6:65–74.

    Article  Google Scholar 

  • Boots AW, Balk JM, Bast A, Haenen GR. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicity. Biochem Biophys Res Commun. 2005;338:923–9.

    Article  CAS  PubMed  Google Scholar 

  • Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585:325–37.

    Article  CAS  PubMed  Google Scholar 

  • Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci. 2011;124:225–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SM, Kim BC, Cho YH, Choi KH, Chang J, Park MS, Kim MK, Cho KH, Kim JK. Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J. 2014;50:45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol. 2012;143:383–96.

    Article  CAS  PubMed  Google Scholar 

  • Dajas F, Andrés AC, Florencia A, Carolina E, Felicia RM. Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent Nerv Syst Agents Med Chem. 2013;13:30–5.

    Article  CAS  PubMed  Google Scholar 

  • D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita. 2007;43:348–61.

    PubMed  Google Scholar 

  • de Boer VC, Dihal AA, vander Woude H, Arts IC, Wolffram S, Alink GM, et al. Tissue distribution of quercetin in rats and pigs. J Nutr. 2005;135:1718–25.

    PubMed  Google Scholar 

  • Di Giovanni S, Eleuteri S, Paleologou KE, Yin G, Zweckstetter M, Carrupt PA, Lashuel HA. Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of alpha-synuclein and beta-amyloid and protect against amyloid-induced toxicity. J Biol Chem. 2010;285:14941–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egert S, Rimbach G. Which sources of flavonoids: complex diets or dietary supplements? Adv Nutr. 2011;2:8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorania M, Guidarellib A, Blasaa M, Azzolinia C, Candiraccia M, Piattia E, Canton H. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extra mitochondrial fraction of the flavonoid. J Nutr Biochem. 2010;21:397–404.

    Article  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Bruno RS. Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem. 2015;26(3):201–10. doi:10.1016/j.jnutbio.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  • Haslam E, Cai Y. Plant polyphenols (vegetable tannins): gallic acid metabolism. Nat Prod Rep. 1994;11:41–66.

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Zaman A, Jahan I, Chakravorty R, Chakraborty S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J Young Pharm. 2013;5:173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YN, Johnson GV. The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. J Bioenerg Biomembr. 2010;42:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung M, Park M. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules. 2007;12:2130–9.

    Article  CAS  PubMed  Google Scholar 

  • Kao TK, Ou YC, Raung SL, Lai CY, Liao SL, Chen CJ. Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci. 2010;86:315–21.

    Article  CAS  PubMed  Google Scholar 

  • Kelsey NA, Wilkins HM, Linseman DA. Nutraceutical antioxidants as novel neuroprotective agents. Molecules. 2010;15:7792–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Lee JI, Lee WY, Kim SE. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytother Res. 2004;18:663–6.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, Lee SE. Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J Agric Food Chem. 2005;53:8537–41.

    Article  CAS  PubMed  Google Scholar 

  • Kozłowska A, Szostak-Wegierek D. Flavonoids—food sources and health benefits. Rocz Panstw Zakl Hig. 2014;65:79–85.

    PubMed  Google Scholar 

  • Kumar A, Sehgal N, Kumar P, et al. Protective effect of quercetin against ICV colchicine-induced cognitive dysfunctions and oxidative damage in rats. Phytother Res. 2008;22:1563–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Kwak HJ, Piao MS, Jang JW, Kim SH, Kim HS. Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir. 2011;153:1321–9.

    Article  PubMed  Google Scholar 

  • Letenneur L, Proust-Lima C, Gouge AL, Dartigues JF, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol. 2007;165:1364–71.

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

    Article  CAS  PubMed  Google Scholar 

  • Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RA, Murphy MP. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J Biol Chem. 2002;277:17048–56.

    Article  CAS  PubMed  Google Scholar 

  • Liu CM, Zheng GH, Cheng C, Sun JM. Quercetin protects mouse brain against lead-induced neurotoxicity. J Agric Food Chem. 2013;61:7630–5.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zheng YL, Luo L, et al. Quercetin reverses D-galactose induced neurotoxicity in mouse brain. Behav Brain Res. 2006;171:251–60.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Shan Q, Zheng ZH, Liu CM, Wang YJ. Quercetin activates AMP-activated protein kinase by reducing PP2C expression, protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol. 2010;222:199–212.

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;9:727–47.

    Google Scholar 

  • Marchetti P, Decaudin D, Macho A, Zamzami N, Hirsch T, Susin SA, Kroemer G. Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function. Eur J Immunol. 1997;27:289–96.59.

    Article  CAS  PubMed  Google Scholar 

  • Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem. 1997;68:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Mazza G, Maniati E. Anthocyanins in fruits, vegetables and grains. Boca Raton, FL: CRC Press; 1994.

    Google Scholar 

  • Miles SL, McFarland M, Niles RM. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human diseases. Nutr Rev. 2014;72:720–34.

    Article  PubMed  Google Scholar 

  • Oliveira GL, et al. Potential involvement of oxidative stress in the induction of neurodegenerative diseases: actions, mechanisms and neurotherapeutic potential of natural antioxidants. Afr J Pharm. 2014;8:685–700.

    Google Scholar 

  • Ossola B, Kääriäinen TM, Männistö PT. The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf. 2009;8:397–409.

    Article  CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2:270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs. 2013;22(7):863–80.

    Article  CAS  PubMed  Google Scholar 

  • Pocernich CB, Lange ML, Sultana R, Butterfield DA. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr Alzheimer Res. 2011;8:452–69.

    Article  CAS  PubMed  Google Scholar 

  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res. 1998;23:81–8.

    Article  CAS  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM. Mechanisms of disease. N Engl J Med. 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  • Rendeiro C, Guerreiro JD, Williams CM, Spencer JP. Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioral effects. Proc Genes Soc. 2012;71:246–62.

    CAS  Google Scholar 

  • Russo M, Spangnulo C, Tedesco I, Bilotto S, Russo GL. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol. 2012;83:6–15.

    Article  CAS  PubMed  Google Scholar 

  • Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93C:134–45.

    Article  CAS  Google Scholar 

  • Sandhir R, Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta. 1832;2013:421–30.

    Google Scholar 

  • Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130:2073S–85.

    CAS  PubMed  Google Scholar 

  • Schultke E, Kendall E, Kamencic H, Ghong Z, Griebel RW, Juurlink BHJ. Quercetin promotes recovery from acute spinal cord injury: an MRI supported efficacious dose determination. J Neurotrauma. 2003;20:583–91.

    Article  CAS  PubMed  Google Scholar 

  • Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol. 1998;55:1747–58.

    Article  CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord. 2013;28:14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small DH, McLean CA. Alzheimer’s disease and the amyloid beta protein: what is the role of amyloid? J Neurochem. 1999;73:443–9.

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP. Interactions of flavonoids within neuronal signalling pathways. Genes Nutr. 2007;2:257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JP. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 2009;4:243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JP, Vauzour D, Rendeiro C. Flavonoids and cognition: the molecular mechanisms underlying their behavioral effects. Arch Biochem Biophys. 2009;492:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med. 2012;33:83–97.

    Article  CAS  PubMed  Google Scholar 

  • Sriraksa N, Wattanathorn J, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol K. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med. 2012;2012:823206.

    Article  PubMed  Google Scholar 

  • Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012;2012:914273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57:369–84.

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med. 2001;30:583–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetham Elumalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elumalai, P., Lakshmi, S. (2016). Role of Quercetin Benefits in Neurodegeneration. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_12

Download citation

Publish with us

Policies and ethics