Skip to main content

Epigenetic Modifications in Neurological Diseases: Natural Products as Epigenetic Modulators a Treatment Strategy

  • Chapter
  • First Online:
The Benefits of Natural Products for Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 12))

Abstract

Epigenetic modifications, including DNA methylation, covalent histone modifications, and small noncoding RNAs, play a key role in regulating the gene expression. This regulatory mechanism is important in cellular differentiation and development. Recent advances in the field of epigenetics extended the role of epigenetic mechanisms in controlling key biological processes such as genome imprinting and X-chromosome inactivation. Aberrant epigenetic modifications are associated with the development of many diseases. The role of epigenetic modifications in various neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Huntington disease, epilepsy, and multiple sclerosis is rapidly emerging. The use of epigenetic modifying drugs to treat these diseases has been the interest in recent years. A number of natural products having diverse mechanism of action are used for drug discovery. For many years, natural compounds have been used to treat various neurodegenerative diseases, but the use of such compounds as epigenetic modulators to reverse or treat neurological diseases are not well studied. In this chapter, we mainly focus on how various epigenetic modifications play a key role in neurodegenerative diseases, their mechanism of action, and how it acts as a potential therapeutic target for epigenetic drugs to treat these diseases will be discussed.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-28383-8_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler Nevo G, Meged S, Sela BA, et al. Homocysteine levels in adolescent schizophrenia patients. Eur Neuropsychopharmacol. 2006;16:588–91.

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S. The molecular pathology of schizophrenia—focus on histone and DNA modifications. Brain Res Bull. 2010;83:103–7.

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66.

    Article  CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  CAS  PubMed  Google Scholar 

  • Ammal Kaidery N, Tarannum S, Thomas B. Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics. 2013;10:698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(Suppl):S18–25.

    Article  PubMed  Google Scholar 

  • Applebaum J, Shimon H, Sela BA, et al. Homocysteine levels in newly admitted schizophrenic patients. J Psychiatr Res. 2004;38:413–6.

    Article  PubMed  Google Scholar 

  • Balasubramanyam K, Altaf M, Varier RA, et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem. 2004a;279:33716–26.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Swaminathan V, Ranganathan A, et al. Small molecule modulators of histone acetyltransferase p300. J Biol Chem. 2003;278:19134–40.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 2004b;279:51163–71.

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    Article  CAS  PubMed  Google Scholar 

  • Bassett SA, Barnett MP. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 2014;6:4273–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baur JA. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev. 2010;131:261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene. 1988;74:9–12.

    Article  CAS  PubMed  Google Scholar 

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  CAS  PubMed  Google Scholar 

  • Bjerling P, Silverstein RA, Thon G, et al. Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol. 2002;22:2170–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403.

    Article  CAS  PubMed  Google Scholar 

  • Bollati V, Schwartz J, Wright R, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–9.

    Article  CAS  PubMed  Google Scholar 

  • Bottiglieri T, Godfrey P, Flynn T, et al. Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry. 1990;53:1096–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536–9.

    Article  PubMed  Google Scholar 

  • Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003;4:235–40.

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article  CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012;81:97–117.

    Article  CAS  PubMed  Google Scholar 

  • Chandregowda V, Kush A, Reddy GC. Synthesis of benzamide derivatives of anacardic acid and their cytotoxic activity. Eur J Med Chem. 2009;44:2711–9.

    Article  CAS  PubMed  Google Scholar 

  • Choi KC, Jung MG, Lee YH, et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 2009;69:583–92.

    Article  CAS  PubMed  Google Scholar 

  • Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5:e1000602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa FF. Non-coding RNAs, epigenetics and complexity. Gene. 2008;410:9–17.

    Article  CAS  PubMed  Google Scholar 

  • De Ruijter AJ, van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desplats P, Spencer B, Coffee E, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286:9031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, et al. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114:567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastwood SL, Harrison PJ. Cellular basis of reduced cortical reelin expression in schizophrenia. Am J Psychiatry. 2006;163:540–2.

    Article  PubMed  Google Scholar 

  • Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol. 2007;19:281–9.

    Article  CAS  PubMed  Google Scholar 

  • Edwards TM, Myers JP. Environmental exposures and gene regulation in disease etiology. Cien Saude Colet. 2008;13:269–81.

    Article  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  • Fang MZ, Chen D, Sun Y, et al. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005;11:7033–41.

    Article  CAS  PubMed  Google Scholar 

  • Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63:7563–70.

    CAS  PubMed  Google Scholar 

  • Fatemi SH, Earle JA, McMenomy T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry. 2000;5(654–663):571.

    Article  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002;9:45–57.

    Article  CAS  PubMed  Google Scholar 

  • Grayson DR, Jia X, Chen Y, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A. 2005;102:9341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.

    Article  CAS  PubMed  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guibert S, Weber M. Functions of DNA methylation and hydroxymethylation in mammalian development. Curr Top Dev Biol. 2013;104:47–83.

    Article  CAS  PubMed  Google Scholar 

  • Guidotti A, Auta J, Davis JM, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57:1061–9.

    Article  CAS  PubMed  Google Scholar 

  • Guidotti A, Auta J, Davis JM, et al. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl). 2005;180:191–205.

    Article  CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23.

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999;96:14412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck N, Garwood J, Loeffler JP, et al. Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy. Neuroscience. 2004;129:309–24.

    Article  CAS  PubMed  Google Scholar 

  • Huang HS, Matevossian A, Whittle C, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27:11254–62.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Doherty JJ, Dingledine R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J Neurosci. 2002;22:8422–8.

    CAS  PubMed  Google Scholar 

  • Impagnatiello F, Guidotti AR, Pesold C, et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A. 1998;95:15718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15:165–74.

    Article  CAS  PubMed  Google Scholar 

  • Khan SI, Aumsuwan P, Khan IA, et al. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol. 2012;25:61–73.

    Article  CAS  PubMed  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2010;35:870–80.

    Article  CAS  PubMed  Google Scholar 

  • King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen. 2008;49:36–45.

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27.

    Article  CAS  PubMed  Google Scholar 

  • Kobow K, El-Osta A, Blumcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia. 2013;54 Suppl 2:41–7.

    Article  CAS  PubMed  Google Scholar 

  • Kobow K, Jeske I, Hildebrandt M, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol. 2009;68:356–64.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  • Krebs MO, Bellon A, Mainguy G, et al. One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol Med. 2009;15:562–70.

    Article  CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005;68:1018–30.

    Article  CAS  PubMed  Google Scholar 

  • Levine J, Stahl Z, Sela BA, et al. Elevated homocysteine levels in young male patients with schizophrenia. Am J Psychiatry. 2002;159:1790–2.

    Article  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu W, Huang Y, et al. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int J Mol Med. 2012;30:1081–6.

    CAS  PubMed  Google Scholar 

  • Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17:2141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479–85s.

    Google Scholar 

  • Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 2009;323:1074–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machnes ZM, Huang TC, Chang PK, et al. DNA methylation mediates persistent epileptiform activity in vitro and in vivo. PLoS One. 2013;8:e76299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai A, Rotili D, Tarantino D, et al. Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J Med Chem. 2006;49:6897–907.

    Article  CAS  PubMed  Google Scholar 

  • Mantelingu K, Reddy BA, Swaminathan V, et al. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol. 2007;14:645–57.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Dumaop W, Galasko D, et al. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics. 2013;8:1030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, et al. Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging. 2010;31:2025–37.

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, et al. Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging. 2011;32:1161–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature. 2000;403:501–2.

    Article  CAS  PubMed  Google Scholar 

  • Miller-Delaney SF, Das S, Sano T, et al. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci. 2012;32:1577–88.

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14(Spec No 1):R47–58.

    Article  CAS  PubMed  Google Scholar 

  • Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem. 1996;67:1328–31.

    Article  CAS  PubMed  Google Scholar 

  • Moyad MA. Soy, disease prevention, and prostate cancer. Semin Urol Oncol. 1999;17:97–102.

    CAS  PubMed  Google Scholar 

  • Myung NH, Zhu X, Kruman II, et al. Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordr). 2008;30:209–15.

    Article  Google Scholar 

  • Nishioka K, Rice JC, Sarma K, et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell. 2002;9:1201–13.

    Article  CAS  PubMed  Google Scholar 

  • No JK, Soung DY, Kim YJ, et al. Inhibition of tyrosinase by green tea components. Life Sci. 1999;65:l241–6.

    Article  Google Scholar 

  • Okano M, Xie S, Li E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res. 1998;26:2536–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10:475–8.

    Article  CAS  PubMed  Google Scholar 

  • Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317:516–9.

    Article  CAS  PubMed  Google Scholar 

  • Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010;192:119–25.

    Article  CAS  PubMed  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

    Article  CAS  PubMed  Google Scholar 

  • Piaz FD, Vassallo A, Rubio OC, et al. Chemical biology of histone acetyltransferase natural compounds modulators. Mol Divers. 2011;15:401–16.

    Article  CAS  PubMed  Google Scholar 

  • Pieper HC, Evert BO, Kaut O, et al. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: implications for selective neuronal vulnerability. Neurobiol Dis. 2008;32:521–7.

    Article  CAS  PubMed  Google Scholar 

  • Ravindra KC, Selvi BR, Arif M, et al. Inhibition of lysine acetyltransferase KAT3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin. J Biol Chem. 2009;284:24453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Park B, et al. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011;6:93–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka WB, Zhubi A, Veldic M, et al. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry. 2007;12:385–97.

    Article  CAS  PubMed  Google Scholar 

  • Sharma RP, Grayson DR, Gavin DP. Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res. 2008;98:111–7.

    Article  PubMed  Google Scholar 

  • Shemer R, Razin A. Epigenetics. In: Russo VEA, Martienssen RA, Riggs AD, editors. Plainview. New York: Cold Spring Harbor Lab. Press; 1996. p. 215–30.

    Google Scholar 

  • Shi ST, Wang ZY, Smith TJ, et al. Effects of green tea and black tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone bioactivation, DNA methylation, and lung tumorigenesis in A/J mice. Cancer Res. 1994;54:4641–7.

    CAS  PubMed  Google Scholar 

  • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.

    Article  CAS  PubMed  Google Scholar 

  • Sng JC, Taniura H, Yoneda Y. Histone modifications in kainate-induced status epilepticus. Eur J Neurosci. 2006;23:1269–82.

    Article  PubMed  Google Scholar 

  • St Laurent R, O'Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience. 2013;246:382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stante M, Minopoli G, Passaro F, et al. Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks. Proc Natl Acad Sci U S A. 2009;106:5093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanska B, Rudnicka K, Bednarek A, et al. Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol. 2010;638:47–53.

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam D, Thombre R, Dhar A, et al. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol. 2014;4:80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jiang X, Chen S, et al. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 2006;580:4353–6.

    Article  CAS  PubMed  Google Scholar 

  • Sung B, Pandey MK, Ahn KS, et al. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood. 2008;111:4880–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002;16:1779–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 2005;19:815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–6.

    Article  CAS  PubMed  Google Scholar 

  • Vahid F, Zand H, Nosrat-Mirshekarlou E, et al. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene. 2015;562:8–15.

    Article  CAS  PubMed  Google Scholar 

  • Vanhees K, Coort S, Ruijters EJ, et al. Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J. 2011;25:797–807.

    Article  CAS  PubMed  Google Scholar 

  • Veldic M, Caruncho HJ, Liu WS, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A. 2004;101:348–53.

    Article  CAS  PubMed  Google Scholar 

  • Veldic M, Guidotti A, Maloku E, et al. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A. 2005;102:2152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss K, Gamblin TC. GSK-3beta phosphorylation of functionally distinct tau isoforms has differential, but mild effects. Mol Neurodegener. 2009;4:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, An W, Cao R, et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell. 2003;12:475–87.

    Article  CAS  PubMed  Google Scholar 

  • Wang TT, Sathyamoorthy N, Phang JM. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 1996;17:271–5.

    Article  PubMed  Google Scholar 

  • Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A. 2006;103:3480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JC, Santi DV. On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clin Biol Res. 1985;198:119–29.

    CAS  PubMed  Google Scholar 

  • Xiao Y, Camarillo C, Ping Y, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS One. 2014;9:95875.

    Article  Google Scholar 

  • Xie S, Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236:87–95.

    Article  CAS  PubMed  Google Scholar 

  • Xu GL, Bestor TH, Bourc'his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999;402:187–91.

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008;9:206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zee BM, Levin RS, Xu B, et al. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010;285:3341–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen H. Genistein, an epigenome modifier during cancer prevention. Epigenetics. 2011;6:888–91.

    Article  PubMed  Google Scholar 

  • Zhu Q, Wang L, Zhang Y, et al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci. 2012;46:420–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We apologize to colleagues whose relevant works were not cited due to space constrains.

Compliance with Ethics Requirements The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omkaram Gangisetty or Sengottuvelan Murugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gangisetty, O., Murugan, S. (2016). Epigenetic Modifications in Neurological Diseases: Natural Products as Epigenetic Modulators a Treatment Strategy. In: Essa, M., Akbar, M., Guillemin, G. (eds) The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_1

Download citation

Publish with us

Policies and ethics