Skip to main content

Bacterial Predation: Natural Guns to Control Infection

  • 1267 Accesses

Abstract

From the Paleolithic until the twentieth century, infectious diseases were the main scourge of mankind. Vaccination, treatment of infectious diseases with antibiotics, and water purification have contributed to enormous improvements in the quality and length of the human life span. However, since it is difficult to design new vaccines to protect us against a wide variety of microbial pathogens and the spread of antibiotic-resistant pathogens poses additional difficulties, new alternative treatments for infectious diseases are needed. Environmental bacteria can be killed by predation from bacteriophages, heterotrophic protists, and predatory bacteria. We present in this review these bacterial natural predators to envisage their potential usefulness in fighting pathogens from the environment and/or from infected animal hosts. Protists are generalist grazers of prokaryotes, bacteriophages mostly highly host-specific and predatory bacteria collectively known as the Bdellovibrio and bdello-like organisms (BALOs), are neither true generalists nor hard-core specialists. Recently, “natural” non-predatory microorganisms are also being studied to treat a wide variety of human diseases, including gastrointestinal disorders, urinary infections, osteoporosis, and cancer. We “simply” should observe nature. As Joshua Lederberg remembered, taking August Krogh principle, “for any given scientific challenge there is a critter fittest toward its solution”.

Keywords

  • Lateral Gene Transfer
  • Cluster Regularly Interspaced Short Palindromic Repeat
  • Phage Therapy
  • Digestive Vacuole
  • Human Life Span

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28368-5_18
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28368-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abedon ST (2011) Lysis from without. Bacteriophage 1:1–4

    CrossRef  Google Scholar 

  • Abedon ST (2014) Phage therapy: eco-physiological pharmacology. Scientifica. doi:10.1155/2014/581639

    PubMed  PubMed Central  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    CAS  CrossRef  PubMed  Google Scholar 

  • Adiba S, Nizak C, van Baalen M, Denamur E, Depaulis F (2010) From grazing resistance to pathogenesis: the coincidental evolution of virulence factors. PLoS ONE 5:e11882

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Allen HK, Abedon ST (2014) Virus ecology and disturbances: impact of environmental disruption on the viruses of microorganisms. Frontiers Microbiol. doi:10.3389/fmicb.2014.00700

    Google Scholar 

  • Amaro F, Wang W, Gilbert JA, Anderson OR, Shuman HA (2015) Diverse protist grazers select for virulence-related traïts in Legionella. ISME J. doi:10.1038/ismej.2014.248

    PubMed  Google Scholar 

  • Arnold JW, Koudelka GB (2014) The trojan horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ Microbiol 16:454–466

    CAS  CrossRef  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  CrossRef  PubMed  Google Scholar 

  • Beale E, Li G, Tan MW, Rumbaugh KP (2006) Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135–5137

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Breitbart M (2012) Marine viruses: truth or dare. Annu Rev Mar Sci 4:245–448

    CrossRef  Google Scholar 

  • Casida LE (1982) Ensifer adhaerens gen. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345

    CrossRef  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73

    CAS  CrossRef  PubMed  Google Scholar 

  • Chen H, Athar R, Zheng G, Williams HN (2011) Prey bacteria shape the community structure of their predators. ISME J 5:1322–1324

    Google Scholar 

  • Comeau AM, Buenaventura E, Suttle CA (2005) A persistent, productive, and seasonally dynamic vibriophage population within pacífic oysters (Crassostrea gigas). Appl Environ Microbiol 71:5324–5331

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dopheide A, Lear G, Stott R, Lewis G (2011) Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these protozoa on bacterial biofilm structure and composition. Appl Environ Microb 77:4564–4572

    CAS  CrossRef  Google Scholar 

  • Endersen L, O’Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A (2014) Phage therapy in the food industry. Annu Rev Food Sci Technol 5:327–349

    CAS  CrossRef  PubMed  Google Scholar 

  • Ernst JD (2000) Bacterial inhibition of phagocytosis. Cell Microbiol 2:379–386

    CAS  CrossRef  PubMed  Google Scholar 

  • Esteve I, Guerrero R, Montesinos E, Abella C (1983) Electron microscope study of the interaction of epibiontic bacteria with Chromatium minus in natural habitats. Microb Ecol 9:57–64

    CAS  CrossRef  PubMed  Google Scholar 

  • Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10:785–794

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Fratamico PM, Whiting RC (1996) Isolation of Bdellovibrios that prey on Escherichia coli O157:H7 and Salmonella species and application for removal of prey from stainless steel surfaces. J Food Safety 16:161–173

    CrossRef  Google Scholar 

  • García P, Martínez B, Obeso JM, Rodríguez A (2008) Bacteriophages and their application in food safety. Lett Appl Microbiol. doi:10.1111/j.1472-765X.2008.02458.x

    Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    CAS  CrossRef  PubMed  Google Scholar 

  • Gómez W, Buela L, Castro LT, Chaparro V, Ball MM, Yarzabal LA (2010) Evidence for gluconic acid production by Enterobacter intermedium as an efficient strategy to avoid protozoan grazing. Soil Biol Biochem 42:822–830

    Google Scholar 

  • Gophna U, Charlebois RL, Doolittle WF (2006) Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends Microbiol 14:64–69

    CAS  CrossRef  PubMed  Google Scholar 

  • Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68:1102–1111

    PubMed  Google Scholar 

  • Guerrero R, Berlanga M (2006) Life’s unity and flexibility: the ecological link. Int Microbiol 9:225–235

    CAS  PubMed  Google Scholar 

  • Guerrero R, Berlanga M (2007) The hidden side of the prokaryotic cell: rediscovering the microbial world. Int Microbiol 10:157–168

    CAS  PubMed  Google Scholar 

  • Guerrero R, Carretero F (1975) Phagic factors affecting the frequency of generalized transduction in Salmonella typhimurium. In: Portolés A, Baquero F (eds) “Present aspects of the transmission of the genetic information in microorganisms. Spanish Society for Microbiology, Madrid, pp 223–250 (in Spanish)

    Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteve I, Mas J, Chase D, Margulis L (1986) Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83:2138–2142

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Guerrero R, Piqueras M, Berlanga M (2002) Microbial mats and the search for minimal ecosystems. Int Microbiol 5:177–188

    CAS  CrossRef  PubMed  Google Scholar 

  • Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A (2014) Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol 27:185–190

    CAS  CrossRef  PubMed  Google Scholar 

  • Jousset A (2012) Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol 14:1830–1843

    CrossRef  PubMed  Google Scholar 

  • Kadouri DE, To K, Shanks RMQ, Doi Y (2013) Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS ONE 8:e63397

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kaiser D, Robinson M, Kroos L (2010) Myxobacteria, polarity and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2:a000380. doi:10.1101/cshperspect.a000380

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Koval SF, Hynes SH, Flannagan RS, Pasternak Z, Davidov Y, Jurkevitch E (2012) Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol 63:146–151

    CrossRef  PubMed  Google Scholar 

  • Kutter E, VosD De, Gvsalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    CAS  CrossRef  PubMed  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Google Scholar 

  • Lebba V, Santangelo F, Torino V, Nicoletti M, Gagliardi A, De Biase RV, Cucchiara S, Nencioni L, Conte MP, Schippa S (2013) Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS ONE 8:e61608

    CrossRef  Google Scholar 

  • Lebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, Ambrosi C, Pompili M, De Biase RV, Selan L, Artini M, Pantanella F, Mura F, Passariello C, Nicoletti M, Nencioni L, Transcassini M, Quattrucci S, Schippa S (2014) Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Frontiers Microbiol. doi:10.3389/fmicb.2014.00280

    Google Scholar 

  • Lenz R, Hespell RB (1978) Attempts to grow bdellovibrios surgically injected into animal cells. Arch Microbiol 119:245–248

    CrossRef  Google Scholar 

  • Letarov AV, Golomidova AK, Tarasyan KK (2010) Ecological basis for rational phage therapy. Acta Naturae 2:60–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loozen G, Boon N, Pauwels M, Slomka V, Rodrigues-Herrero E, Quirynen M, Teughels W (2014) Effect of Bdellovibrio bacteriovorus HD100 on multiespecies oral communities. Anaerobe. doi:10.1016/j.anaerobe.2014.09.011

    PubMed  Google Scholar 

  • Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14:524–531

    CrossRef  PubMed  Google Scholar 

  • Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nat Rev Microbiol 3:439–446

    CAS  CrossRef  PubMed  Google Scholar 

  • Markelova NY (2010) Predacious bacteria, Bdellovibrio with potencial for biocontrol. Int J Hygiene Environ Health 213:428–431

    Google Scholar 

  • Martin MO (2002) Predatory prokaryotes: an emerging reseach opportunity. J Mol Microbiol Biotechnol 4:467–477

    Google Scholar 

  • Martin SF (2014) Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 71:4115–4130

    CAS  CrossRef  PubMed  Google Scholar 

  • Merrell DS, Falkow S (2004) Frontal and stealth attack strategies in microbial pathogenesis. Nature 430:250–256

    CAS  CrossRef  PubMed  Google Scholar 

  • Minton NP (2003) Clostridia in cancer therapy. Nat Rev Microbiol 1:237–242

    CAS  CrossRef  PubMed  Google Scholar 

  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol. doi:10.1016/j.tim.2015.01.006

    PubMed  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger M, Jurkevitch E (2013) By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 7:756–769

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, Koval S, Pietrokovski S, Gophna U, Jurkevitch E (2014) In and out: an analysis of epibiotic vs periplasmatic bacterial predators. ISME J 8:625–635

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Patyar S, Joshi R, Byrav DSP, Prakash A, Medhi B, Das BK (2010) Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 17:21. http://www.jbiomedsci.com/content/17/1/21

    Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    CAS  CrossRef  PubMed  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JL, Osborn M, Solan M, van del Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392

    CAS  CrossRef  PubMed  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sckett E, Schuster SC (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692

    CAS  CrossRef  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305. doi:10.1038/ncomms2287

    CrossRef  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schwudke D, Strauch E, Krueger M, Appel B (2001) Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 24:385–394

    CAS  CrossRef  PubMed  Google Scholar 

  • Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H et al (2003) The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-Mannoses that replace phosphate residues: similarities and differences between the lipid as and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 278:27502e12

    Google Scholar 

  • Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, Kadouri DE (2013) An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. PLoS ONE 8:e66723

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidne incognita. Appl Environ Microbiol 71:5646–5649

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539

    CAS  CrossRef  PubMed  Google Scholar 

  • Sockett RE, Lambert C (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2:669–675

    CAS  CrossRef  PubMed  Google Scholar 

  • Stolfa G, Koudelka GB (2012) Entry and killing Tetrahymena thermophila by bacterially produced Shiga toxin. MBio 4:e00416-12. doi:10.1128/mBio.00416-12

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stuart LM, Ezekowitz RA (2008) Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8:131–141

    CAS  CrossRef  PubMed  Google Scholar 

  • Swofford CA, van Dessel N, Forbes NS (2015) Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Nat Acad Aci 112:3457–3462

    CAS  CrossRef  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    CrossRef  Google Scholar 

  • Thomas R, Berdjeb L, Sime-Ngando T, Jacquet S (2011) Viral abundance, production, decay rates and life strategies (lysogeny versus lysis) in Lake Bourget (France). Environ Microb 13:616–630

    CAS  CrossRef  Google Scholar 

  • Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabaolites. Biotechnol Adv 29:223–229

    CAS  CrossRef  PubMed  Google Scholar 

  • Vaitkevicius K, Lindmark B, Ou G, Song T, Toma C, Iwanaga M, Zhu J, Andersson A, Hammarstrom ML, Tuck S, Wai SN (2006) A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc Natl Acad Sci USA 103:9280–9285

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, van Eldere J, Teughels W (2011) Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol 26:52–61

    CrossRef  PubMed  Google Scholar 

  • Wei MQ, Mengesha A, Good D, Anné J (2008) Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 259:16–27

    CAS  CrossRef  PubMed  Google Scholar 

  • Weiman S (2014) Bugs as drugs: bacteria as therapeutics against diseases. Microbe 9:437–441

    Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    CAS  CrossRef  PubMed  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    CrossRef  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Berlanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berlanga, M., Viñas, M., Guerrero, R. (2016). Bacterial Predation: Natural Guns to Control Infection. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_18

Download citation