Skip to main content

The Use of Nanoparticles for Antimicrobial Delivery

  • Chapter
  • First Online:

Abstract

Many currently used antibiotics suffer from some drawbacks such as local and systemic side effects, inadequate therapeutic index, and high antimicrobial resistance to bacteria. Since the emergence of multidrug-resistant bacteria, new antibiotic approaches are required. In recent years, nanotechnology has appeared as a successful tool for the encapsulation of antibiotics into nanoparticles (NPs) aiming to treat bacterial infections and overcoming, at the same time, some of the limitations of traditional antimicrobial therapeutics. Drug delivery systems (DDS) provide several advantages over the free drug such as protection from environmental inactivation and specific target site that can lead to an improvement in the treatment of such diseases. Moreover, NPs can overcome tissue and cellular barriers, thereby can treat infections caused by intracellular microorganisms. NPs are capable of reducing drug dose and toxicity as well as dosing frequency which improve patient compliance. Many nanostructures including liposomes, nanoparticles, or dendrimers have demonstrated their ability to increase the therapeutic efficacy of antibiotics and fight against infectious diseases. In this chapter we provide an overview of the current progress of the latest nanosystems developed to delivery antibiotics to combat microbial infection.

María Moreno-Sastre, Marta Pastor equally contributed to the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abul Kalam M, Sultana Y, Ali A et al (2013a) Part I: Development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J Biomed Mater Res A 101(6):1813–1827. doi:10.1002/jbm.a.34453

    Article  PubMed  CAS  Google Scholar 

  • Abul Kalam M, Sultana Y, Ali A et al (2013b) Part II: Enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J Biomed Mater Res A 101(6):1828–1836. doi:10.1002/jbm.a.34467

    Article  PubMed  CAS  Google Scholar 

  • Ai J, Biazar E, Jafarpour M et al (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed 6:1117–1127

    CAS  Google Scholar 

  • Akbari V, Abedi D, Pardakhty A et al (2013) Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation. J Nanopart Res 15(4):1–14

    Article  CAS  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alhajlan M, Alhariri M, Omri A (2013) Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother 57(6):2694–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhariri M, Azghani A, Omri A (2013) Liposomal antibiotics for the treatment of infectious diseases. Expert Opin Drug Deliv 10(11):1515–1532

    Article  CAS  PubMed  Google Scholar 

  • Alipour M, Halwani M, Omri A et al (2008) Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains. Int J Pharm 355(1–2):293–298

    Article  CAS  PubMed  Google Scholar 

  • Allen TM, Hansen C, Rutledge J (1989) Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. BBA-Biomembr 981(1):27–35

    Article  CAS  Google Scholar 

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58(3):168–172. doi:10.1016/j.biopha.2004.01.007

    Article  PubMed  CAS  Google Scholar 

  • Bargoni A, Cavalli R, Zara GP et al (2001) Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats: Part II. Tissue Distrib Pharmacol Res 43(5):497–502. doi:10.1006/phrs.2001.0813

    CAS  Google Scholar 

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Bilton D, Pressler T, Falac I et al (2013) Phase 3 efficacy and safety data from randomized, multicenter study of liposomal amikacin for inhalation (Arikace®) compared with TOBI® in cystic fibrosis patients with chronic infection due to Pseudomonas aeruginosa. In: Abstracts of North America cystic fibrosis conference, Sant Lake, UT, Poster 235. Cystic Fibrosis Foundation, Bethesda, MD, USA

    Google Scholar 

  • Bilton D, Serisier DJ, De Soyza AT et al (2011) Multicenter, randomized, double-blind, placebo-controlled study (ORBIT 1) to evaluate the efficacy, safety, and tolerability of once daily ciprofloxacin for inhalation in the management of Pseudomonas aeruginosa infections in patients with non-cystic fibrosis bronchiectasis. Eur Respir J 38(Suppl 55):1925

    Google Scholar 

  • Briones E, Colino CI, Lanao JM (2008) Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release 125(3):210–227

    Article  CAS  PubMed  Google Scholar 

  • Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27

    Article  CAS  PubMed  Google Scholar 

  • Burygin G, Khlebtsov B, Shantrokha A et al (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4(8):794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli R, Zara GP, Caputo O et al (2000) Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I—A pharmacokinetic study. Pharmacol Res 42(6):541–545. doi:10.1006/phrs.2000.0737

    Article  CAS  PubMed  Google Scholar 

  • Cavalli R, Gasco RM, Chetoni P et al (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245. doi:10.1016/S0378-5173(02)00080-7

    Article  CAS  PubMed  Google Scholar 

  • Chamundeeswari M, Sobhana S, Jacob JP et al (2010) Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotech Appl Biochem 55(1):29–35

    Article  CAS  Google Scholar 

  • Changsan N, Nilkaeo A, Pungrassami P et al (2009) Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target 17(10):751–762

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Qu H, Ma M et al (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 42(7):1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Cheow WS, Chang MW, Hadinoto K (2010a) Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. J Biomed Nanotech 6(4):391–403

    Article  CAS  Google Scholar 

  • Cheow WS, Chang MW, Hadinoto K (2010b) Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res 27(8):1597–1609

    Article  CAS  PubMed  Google Scholar 

  • Chono S, Suzuki H, Togami K et al (2011) Efficient drug delivery to lung epithelial lining fluid by aerosolization of ciprofloxacin incorporated into PEGylated liposomes for treatment of respiratory infections. Drug Dev Ind Pharm 37(4):367–372

    Article  CAS  PubMed  Google Scholar 

  • Clancy JP, Dupont L, Konstan MW et al (2013) Phase II studies of nebulised arikace in CF patients with Pseudomonas aeruginosa infection. Thorax 68:818–825. doi:10.1136/thoraxjnl-2012-202230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Ng WK, Tan RBH (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 47(1):139–151

    Article  CAS  PubMed  Google Scholar 

  • Dillen K, Vandervoort J, Van den Mooter G et al (2004) Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275(1):171–187

    Article  CAS  PubMed  Google Scholar 

  • Dillen K, Vandervoort J, Van den Mooter G et al (2006) Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm 314(1):72–82

    Article  CAS  PubMed  Google Scholar 

  • Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A et al (2006) In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int J Pharm 315(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141

    Article  CAS  PubMed  Google Scholar 

  • Ehsan Z, Wetzel JD, Clancy JP (2014) Nebulized liposomal amikacin for the treatment of Pseudomonas aeruginosa infection in cystic fibrosis patients. Expert Opin Investig Drugs 23:743–749. doi:10.1517/13543784.2014.895322

    Article  CAS  PubMed  Google Scholar 

  • El-Ansary A, Al-Daihan S (2009) On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol, 754810

    Google Scholar 

  • El-Ridy MS, Abdelbary A, Nasr EA et al (2011) Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev Ind Pharm 37(9):1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG et al (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotech Biol Med 9(1):1–14

    Article  CAS  Google Scholar 

  • Garhwal R, Shady SF, Ellis EJ et al (2012) Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Iovs 53(3):1341–1352. doi:10.1167/iovs.11-8215

    CAS  Google Scholar 

  • Geller DE, Weers J, Heuerding S (2011) Development of an inhaled dry-powder formulation of tobramycin using PulmoSphereTM technology. J Aerosol Med Pulm Drug Deliv 24:175–182. doi:10.1089/jamp.2010.0855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari S, Varshosaz J, Saadat A et al (2011) Stability and antimicrobial effect of amikacin loaded SLN. Int J Nanomed 6:35–43

    CAS  Google Scholar 

  • Gupta H, Aqil M, Khar RK et al (2011) Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 19(6):409–417. doi:10.3109/1061186X.2010.504268

    Article  CAS  PubMed  Google Scholar 

  • Gupta H, Aqil M, Khar RK et al (2013) Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention. Drug Deliv 20(7):306–309. doi:10.3109/10717544.2013.838712

    Article  CAS  PubMed  Google Scholar 

  • He C, Yin L, Tang C et al (2012) Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 33(33):8569–8578. doi:10.1016/j.biomaterials.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  • Hon-Leung Lee V, Robinson JR (1979) Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci 68(6):673. doi:10.1002/jps.2600680606

    Article  Google Scholar 

  • Huh AJ, Kwon YJ (2011) Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  • Huttner A, Harbarth S, Carlet J et al (2013) Antimicrobial resistance: a global view from the 2013 world healthcare-associated infections. Antimicrob Resist Infect 2:31

    Article  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1(3):297–315

    Article  CAS  Google Scholar 

  • Infectious Diseases Society of America (IDSA), Spellberg B, Blaser M et al (2011) Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis Off Publ Infect Dis Soc Am 52(5):397–428

    Google Scholar 

  • Jain D, Banerjee R (2008) Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res Part B: Appl Biomater 86(1):105–112

    Article  CAS  Google Scholar 

  • Jeong Y, Na H, Seo D et al (2008) Ciprofloxacin-encapsulated poly (DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int J Pharm 352(1):317–323

    Article  CAS  PubMed  Google Scholar 

  • Kalhapure RS, Kathiravan MK, Akamanchi KG et al (2013) Dendrimers-from organic synthesis to pharmaceutical applications: an update. Pharm Dev Tech 20(1):22–40

    Article  CAS  Google Scholar 

  • Kalhapure RS, Mocktar C, Sikwal DR et al (2014) Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surf B 117:303–311

    Article  CAS  Google Scholar 

  • Kalhapure RS, Suleman N, Mocktar C et al (2015) Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104(3):872–905

    Article  CAS  PubMed  Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Pol Sci 39(2):268–307

    Article  CAS  Google Scholar 

  • Kim H, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res 14(3–4):123–139

    Article  CAS  PubMed  Google Scholar 

  • Kitchens KM, Kolhatkar RB, Swaan PW et al (2006) Transport of poly (amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res 23(12):2818–2826

    Article  CAS  PubMed  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    Article  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Kovacevic A, Savic S, Vuleta G et al (2011) Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm 406(1):163–172

    Article  CAS  PubMed  Google Scholar 

  • Krausz AE, Adler BL, Cabral V et al (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11(1):195–206. doi:10.1016/j.nano.2014.09.004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75(1):1–18

    Article  CAS  Google Scholar 

  • Labana S, Pandey R, Sharma S et al (2002) Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int J Antimicrob Ag 20(4):301–304

    Article  CAS  Google Scholar 

  • Lai P, Daear W, Löbenberg R et al (2014) Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d, l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B 118:154–163

    Article  CAS  Google Scholar 

  • Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Chious SF, Lai CH (2012) Formulation and evaluation of water-in-oil amoxicillin-loaded nanoemulsions using for Helicobacter pylori eradication. Process Biochem 47(10):1469–1478. doi:10.1016/j.procbio.2012.05.019

    Article  CAS  Google Scholar 

  • Lin Y, Tsai S, Lai C et al (2013) Genipin-cross-linked fucose–chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 34(18):4466–4479

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Cheng Y, Xu Z et al (2007) Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem 42(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Mah TC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manosroi A, Khanrin P, Lohcharoenkal W et al (2010) Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm 392(1–2):304–310

    Article  CAS  PubMed  Google Scholar 

  • Maya S, Indulekha S, Sukhithasri V et al (2012) Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol 51(4):392–399

    Article  CAS  PubMed  Google Scholar 

  • Meers P, Neville M, Malinin V et al (2008) Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 61:859–868. doi:10.1093/jac/dkn059

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2):165–196

    Article  CAS  PubMed  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5):171–185

    Article  CAS  PubMed  Google Scholar 

  • Mishra MK, Kotta K, Hali M et al (2011) PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomed Nanotech Biol Med 7(6):935–944

    Article  CAS  Google Scholar 

  • Moghaddam PH, Ramezani V, Esfandi E et al (2013) Development of a nano-micro carrier system for sustained pulmonary delivery of clarithromycin. Powder Technol 239:478–483

    Article  CAS  Google Scholar 

  • Mugabe C, Azghani AO, Omri A (2005) Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother 55(2):269–271

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  PubMed  Google Scholar 

  • Müller R, Radtke M, Wissing S (2002) Nanostructured lipid matrices for improved microencapsulation of drugs”. Int J Pharm 242(1):121–128

    Article  PubMed  Google Scholar 

  • Muppidi K, Wang J, Betageri G et al (2011) PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin. Antimicrob Ag Chemother 55(10):4537–4542

    Article  CAS  Google Scholar 

  • Ong HX, Traini D, Cipolla D et al (2012) Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res 29(12):3335–3346

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinburgh, Scotland) 85(4):227–234

    Google Scholar 

  • Pardeike J, Hommoss A, Muller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–184

    Article  CAS  PubMed  Google Scholar 

  • Pastor M, Moreno-Sastre M, Esquisabel A et al (2014) Sodium colistimethate loaded lipid nanocarriers for the treatment of Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 477(1–2):485–494

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Ag 13(3):155–168

    Article  CAS  Google Scholar 

  • Ray K, Marteyn B, Sansonetti PJ et al (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 7(5):333–340

    Article  CAS  PubMed  Google Scholar 

  • Rukholm G, Mugabe C, Azghani AO et al (2006) Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Ag 27(3):247–252

    Article  CAS  Google Scholar 

  • Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4(4):297–305

    Article  CAS  PubMed  Google Scholar 

  • Sambhakar S, Singh B, Paliwal S et al (2011) Niosomes as a potential carrier for controlled release of Cefuroxime axetil. Asian J. Biochem Pharm Res 1:126–136

    CAS  Google Scholar 

  • Sanchez DA, Schairer D, Tuckmann-Vernon C et al (2014) Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomedicine 10(1):269–277. doi:10.1016/j.nano.2013.06.002

    CAS  PubMed  Google Scholar 

  • Sande L, Sanchez M, Montes J et al (2012) Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection mode. J Antimicrob Chemother 67(9):2191–2194. doi:10.1093/jac/dks212

    Article  CAS  PubMed  Google Scholar 

  • Sankhyan A, Pawar P (2012) Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci 2(6):20–32

    Google Scholar 

  • Serisier DJ, Bilton D, De Soyza A et al (2013) Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): A randomised, double-blind, placebo-controlled trial. Thorax 68(9):812–817. doi:10.1136/thoraxjnl-2013-203207

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah N, Steptoe RJ, Parekh HS (2011) Low-generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. J Pept Sci 17(6):470–478

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Dwivedi H, Saraf SK et al (2011) Niosomal delivery of isoniazid-development and characterization. Trop J Pharm Res 10(2):203–210

    Article  CAS  Google Scholar 

  • Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Pol Sci 30(3):294–324

    Article  CAS  Google Scholar 

  • Toti US, Guru BR, Hali M et al (2011) Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 32(27):6606–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungaro F, d’Angelo I, Coletta C et al (2012) Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 157(1):149–159

    Article  CAS  PubMed  Google Scholar 

  • Van de Ven H, Paulussen C, Feijens PB et al (2011) PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and Am Bisome. J Control Release 161(3):795–803. doi:10.1016/j.jconrel.2012.05.037

    Google Scholar 

  • Vemuri S, Rhodes C (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Act Helv 70(2):95–111

    Article  CAS  Google Scholar 

  • Wang X, Zhang S, Zhu L et al (2012a) Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J 191(1):115–120

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhu L, Dong Z et al (2012b) Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions. Colloids Surf B 98:105–111

    Article  CAS  Google Scholar 

  • Weers J, Metzheiser B, Taylor G et al (2009) A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv 22:131–138

    Article  CAS  PubMed  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Xiong MH, Bao Y, Yang XZ et al (2014) Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 79:63–76. doi:10.1016/j.addr.2014.02.002

    Article  CAS  Google Scholar 

  • Yang YY (2014) Emergence of multidrug-resistant bacteria: important role of macromolecules and drug delivery systems. Adv Drug Deliv Rev 78:1–2

    Article  PubMed  CAS  Google Scholar 

  • Zaru M, Sinico C, De Logu A et al (2009) Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J Liposome Res 19(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu C et al (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17(6):585–594

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Zhang MX, Hider RC et al (2014) In vitro antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin. FEMS Microbiol Lett 355(2):124–130

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Radovic-Moreno AF, Wu J et al (2014) Nanomedicine in the management of microbial infection–Overview and perspectives. Nano today 9(4):478–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Pedraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moreno-Sastre, M., Pastor, M., Esquisabel, A., Pedraz, J.L. (2016). The Use of Nanoparticles for Antimicrobial Delivery. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_17

Download citation

Publish with us

Policies and ethics