Skip to main content

Quad Census Computation: Simple, Efficient, and Orbit-Aware

  • Conference paper
  • First Online:
Advances in Network Science (NetSci-X 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9564))

Included in the following conference series:

Abstract

The prevalence of select substructures is an indicator of network effects in applications such as social network analysis and systems biology. Moreover, subgraph statistics are pervasive in stochastic network models, and they need to be assessed repeatedly in MCMC sampling and estimation algorithms. We present a new approach to count all induced and non-induced 4-node subgraphs (the quad census) on a per-node and per-edge basis, complete with a separation into their non-automorphic roles in these subgraphs. It is the first approach to do so in a unified manner, and is based on only a clique-listing subroutine. Computational experiments indicate that, despite its simplicity, the approach outperforms previous, less general approaches.

We gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft under grant Br 2158/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auber, D., Chiricota, Y., Jourdan, F., Melançon, G.: Multiscale visualization of small world networks. In: 9th IEEE Symposium on Information Visualization (InfoVis 2003), 20–21 October 2003, Seattle, WA, USA (2003)

    Google Scholar 

  2. Batagelj, V., Mrvar, A.: A subquadratic triad census algorithm for large sparse networks with small maximum degree. Soc. Netw. 23(3), 237–243 (2001)

    Article  Google Scholar 

  3. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein, D., Goodrich, M.T., Strash, D., Trott, L.: Extended dynamic subgraph statistics using h-index parameterized data structures. Theoret. Comput. Sci. 447, 44–52 (2012). doi:10.1016/j.tcs.2011.11.034

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting. Bioinformatics 30(4), 559–565 (2014)

    Article  Google Scholar 

  7. Holland, P.W., Leinhardt, S.: A method for detecting structure in sociometric data. Am. J. Sociol. 76(3), 492–513 (1970)

    Article  Google Scholar 

  8. Holland, P.W., Leinhardt, S.: Local structure in social networks. Sociol. Methodol. 7, 1–45 (1976)

    Article  Google Scholar 

  9. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3–4), 115–121 (2000)

    Article  MathSciNet  Google Scholar 

  10. Kowaluk, M., Lingas, A., Lundell, E.: Counting and detecting small subgraphs via equations and matrix multiplication. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp. 1468–1476 (2011)

    Google Scholar 

  11. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  12. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Arboricity, h-index, and dynamic algorithms. Theor. Comput. Sci. 426, 75–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marcus, D., Shavitt, Y.: RAGE - A rapid graphlet enumerator for large networks. Comput. Netw. 56(2), 810–819 (2012)

    Article  Google Scholar 

  14. Melançon, G., Sallaberry, A.: Edge metrics for visual graph analytics: a comparative study. In: 12th International Conference on Information Visualisation, IV 2008, 8–11 July 2008, London, UK, pp. 610–615 (2008)

    Google Scholar 

  15. Milenković, T., Lai, J., Pržulj, N.: GraphCrunch: a tool for large network analyses. BMC Bioinformatics 9(70), 1–11 (2008)

    Google Scholar 

  16. Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Inf. 6, 257–273 (2008)

    Google Scholar 

  17. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  18. Ortmann, M., Brandes, U.: Triangle listing algorithms: back from the diversion. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2014, Portland, Oregon, USA, 5 January 2014, pp. 1–8 (2014)

    Google Scholar 

  19. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  20. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (\(p^*\)) models for social networks. Soc. Netw. 29(2), 173–191 (2007)

    Article  Google Scholar 

  21. Solava, R.W., Michaels, R.P., Milenković, T.: Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics 28(18), 480–486 (2012)

    Article  Google Scholar 

  22. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 53(3), 526–543 (2011)

    Article  MathSciNet  Google Scholar 

  23. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)

    Article  Google Scholar 

  24. Zhou, X., Nishizeki, T.: Edge-coloring and \(f\)-coloring for various classes of graphs. In: Du, D.Z., Zhang, X.S. (eds.) Algorithms and Computation. LNCS, vol. 834, pp. 199–207. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Ortmann or Ulrik Brandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortmann, M., Brandes, U. (2016). Quad Census Computation: Simple, Efficient, and Orbit-Aware. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds) Advances in Network Science. NetSci-X 2016. Lecture Notes in Computer Science(), vol 9564. Springer, Cham. https://doi.org/10.1007/978-3-319-28361-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28361-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28360-9

  • Online ISBN: 978-3-319-28361-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics