Abstract
The prevalence of select substructures is an indicator of network effects in applications such as social network analysis and systems biology. Moreover, subgraph statistics are pervasive in stochastic network models, and they need to be assessed repeatedly in MCMC sampling and estimation algorithms. We present a new approach to count all induced and non-induced 4-node subgraphs (the quad census) on a per-node and per-edge basis, complete with a separation into their non-automorphic roles in these subgraphs. It is the first approach to do so in a unified manner, and is based on only a clique-listing subroutine. Computational experiments indicate that, despite its simplicity, the approach outperforms previous, less general approaches.
We gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft under grant Br 2158/11-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auber, D., Chiricota, Y., Jourdan, F., Melançon, G.: Multiscale visualization of small world networks. In: 9th IEEE Symposium on Information Visualization (InfoVis 2003), 20–21 October 2003, Seattle, WA, USA (2003)
Batagelj, V., Mrvar, A.: A subquadratic triad census algorithm for large sparse networks with small maximum degree. Soc. Netw. 23(3), 237–243 (2001)
Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)
Eppstein, D., Goodrich, M.T., Strash, D., Trott, L.: Extended dynamic subgraph statistics using h-index parameterized data structures. Theoret. Comput. Sci. 447, 44–52 (2012). doi:10.1016/j.tcs.2011.11.034
Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)
Hočevar, T., Demšar, J.: A combinatorial approach to graphlet counting. Bioinformatics 30(4), 559–565 (2014)
Holland, P.W., Leinhardt, S.: A method for detecting structure in sociometric data. Am. J. Sociol. 76(3), 492–513 (1970)
Holland, P.W., Leinhardt, S.: Local structure in social networks. Sociol. Methodol. 7, 1–45 (1976)
Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3–4), 115–121 (2000)
Kowaluk, M., Lingas, A., Lundell, E.: Counting and detecting small subgraphs via equations and matrix multiplication. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp. 1468–1476 (2011)
Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Arboricity, h-index, and dynamic algorithms. Theor. Comput. Sci. 426, 75–90 (2012)
Marcus, D., Shavitt, Y.: RAGE - A rapid graphlet enumerator for large networks. Comput. Netw. 56(2), 810–819 (2012)
Melançon, G., Sallaberry, A.: Edge metrics for visual graph analytics: a comparative study. In: 12th International Conference on Information Visualisation, IV 2008, 8–11 July 2008, London, UK, pp. 610–615 (2008)
Milenković, T., Lai, J., Pržulj, N.: GraphCrunch: a tool for large network analyses. BMC Bioinformatics 9(70), 1–11 (2008)
Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Inf. 6, 257–273 (2008)
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)
Ortmann, M., Brandes, U.: Triangle listing algorithms: back from the diversion. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2014, Portland, Oregon, USA, 5 January 2014, pp. 1–8 (2014)
Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)
Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (\(p^*\)) models for social networks. Soc. Netw. 29(2), 173–191 (2007)
Solava, R.W., Michaels, R.P., Milenković, T.: Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics 28(18), 480–486 (2012)
Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community structure to characteristics in online collegiate social networks. SIAM Rev. 53(3), 526–543 (2011)
Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)
Zhou, X., Nishizeki, T.: Edge-coloring and \(f\)-coloring for various classes of graphs. In: Du, D.Z., Zhang, X.S. (eds.) Algorithms and Computation. LNCS, vol. 834, pp. 199–207. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ortmann, M., Brandes, U. (2016). Quad Census Computation: Simple, Efficient, and Orbit-Aware. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds) Advances in Network Science. NetSci-X 2016. Lecture Notes in Computer Science(), vol 9564. Springer, Cham. https://doi.org/10.1007/978-3-319-28361-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-28361-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28360-9
Online ISBN: 978-3-319-28361-6
eBook Packages: Computer ScienceComputer Science (R0)