Skip to main content

Charge Separation at Nanostructured Molecular Donor–Acceptor Interfaces

  • Chapter
  • First Online:
Elementary Processes in Organic Photovoltaics

Abstract

Planar and bulk heterojunctions of organic donor and acceptor molecules are used to understand elementary processes in photovoltaic cells. The electronic structure, interface and film morphology, excitonic behavior, device characteristics, and correlations between these properties are reviewed here using a wide range of material combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    J. PflaumExperimental Physics VI, Julius Maximilian University of Würzburg, Am Hubland,97074 Würzburg, GermanyBavarian Center for Applied Energy Research (ZAE Bayern e.V.), Magdalene-Schoch-Straße 3,97074 Würzburg, Germanyemail: Jens.Pflaum@physik.uni-wuerzburg.de

References

  1. http://www.nrel.gov/ncpv/ (2015). Accessed 9 September

  2. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 46). Prog Photovolt Res Appl 23:805–812. doi:10.1002/pip.2637

    Article  Google Scholar 

  3. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. doi:10.1063/1.1736034

    Article  CAS  Google Scholar 

  4. Veldman D, Meskers SCJ, Janssen RAJ (2009) The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater 19:1939–1948. doi:10.1002/adfm.200900090

    Article  CAS  Google Scholar 

  5. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767. doi:10.1021/cr900271s

    Article  CAS  Google Scholar 

  6. Deibel C, Dyakonov V (2010) Polymerfullerene bulk heterojunction solar cells. Rep Prog Phys 73:096401. doi:10.1088/0034-4885/73/9/096401

    Article  Google Scholar 

  7. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2010) Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Phys Rev B 81:125204. doi:10.1103/PhysRevB.81.125204

    Article  Google Scholar 

  8. Opitz A, Wagner J, Brütting W, Salzmann I, Koch N, Manara J, Pflaum J, Hinderhofer A, Schreiber F (2010) Charge separation at molecular donor–acceptor interfaces: correlation between morphology and solar cell performance. IEEE J Sel Top Quant 16:1707–1717. doi:10.1109/JSTQE.2010.2048096

    Article  CAS  Google Scholar 

  9. Forrest SR (2011) The limits to organic photovoltaic cell efficiency. MRS Bull 30:28–32. doi:10.1557/mrs2005.5

    Article  Google Scholar 

  10. Wilke A, Mizokuro T, Blum RP, Rabe JP, Koch N (2010) IEEE J Sel Top Quant 16:1732–1737. doi:10.1109/JSTQE.2010.2042035

    Article  CAS  Google Scholar 

  11. Salzmann I, Duhm S, Heimel G, Oehzelt M, Kniprath R, Johnson RL, Rabe JP, Koch N (2008) Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds. J Am Chem Soc 130:12870–12871. doi:10.1021/ja804793a

    Article  CAS  Google Scholar 

  12. Wagner J, Gruber M, Hinderhofer A, Wilke A, Bröker B, Frisch J, Amsalem P, Vollmer A, Opitz A, Koch N, Schreiber F, Brütting W (2010) High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material. Adv Funct Mater 20:4295–4303. doi:10.1002/adfm.201001028

    Article  CAS  Google Scholar 

  13. Pfützner S (2012) Studies on organic solar cells composed of fullerenes and zinc-phthalocyanines. Ph.D. thesis, TU Dresden. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83486

  14. Opitz A, Frisch J, Schlesinger R, Wilke A, Koch N (2013) Energy level alignment at interfaces in organic photovoltaic devices. J Electron Spectrosc Relat Phenom 190:12–24. doi:10.1016/j.elspec.2012.11.008

    Article  CAS  Google Scholar 

  15. Lau KM, Tang JX, Sun HY, Lee CS, Lee ST, Yan D (2006) Interfacial electronic structure of copper phthalocyanine and copper hexadecafluorophthalocyanine studied by photoemission. Appl Phys Lett 88:173513. doi:10.1063/1.2198484

    Article  Google Scholar 

  16. Krause S, Casu MB, Schöll A, Umbach E (2008) Determination of transport levels of organic semiconductors by UPS and IPS. New J Phys 10:085001. doi:10.1088/1367-2630/10/8/085001

    Article  Google Scholar 

  17. Wilke A, Endres J, Hörmann U, Niederhausen J, Schlesinger R, Frisch J, Amsalem P, Wagner J, Gruber M, Opitz A, Vollmer A, Brütting W, Kahn A, Koch N (2012) Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Appl Phys Lett 101:233301. doi:10.1063/1.4769360

    Article  Google Scholar 

  18. Han W, Yoshida H, Ueno N, Kera S (2013) Electron affinity of pentacene thin film studied by radiation-damage free inverse photoemission spectroscopy. Appl Phys Lett 103:123303. doi:10.1063/1.4821445

    Article  Google Scholar 

  19. Brinkmann H, Kelting C, Makarov S, Tsaryova O, Schnurpfeil G, Wöhrle D, Schlettwein D (2008) Fluorinated phthalocyanines as molecular semiconductor thin films. Phys Stat Sol A 205:409–420. doi:10.1002/pssa.200723391

    Article  CAS  Google Scholar 

  20. Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10:515–520. doi:10.1016/j.orgel.2008.12.011

    Article  CAS  Google Scholar 

  21. Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York. doi:10.1002/0470068329

    Google Scholar 

  22. Rand B, Burk D, Forrest S (2007) Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys Rev B 75:115327. doi:10.1103/PhysRevB.75.115327

    Article  Google Scholar 

  23. Riede M, Mueller T, Tress W, Schueppel R, Leo K (2008) Small-molecule solar cells-status and perspectives. Nanotechnology 19:424001. doi:10.1088/0957-4484/19/42/424001

    Article  CAS  Google Scholar 

  24. Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90:3632–3641. doi:10.1063/1.1394920

    Article  Google Scholar 

  25. Grob S, Gruber M, Bartynski AN, Hörmann U, Linderl T, Thompson ME, Brütting W (2014) Amorphous vs crystalline exciton blocking layers at the anode interface in planar and planar-mixed heterojunction organic solar cells. Appl Phys Lett 104:213304. doi:10.1063/1.4879839

    Article  Google Scholar 

  26. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185. doi:10.1063/1.96937

    Article  CAS  Google Scholar 

  27. Yu S, Klimm C, Schäfer P, Rabe JP, Rech B, Koch N (2011) Organic photovoltaic cells with interdigitated structures based on pentacene nanocolumn arrays. Org Electron 12:2180. doi:10.1016/j.orgel.2011.09.021

    Article  CAS  Google Scholar 

  28. Yu S, Opitz A, Grob S, Resel R, Oehzelt M, Brütting W, Salzmann I, Koch N (2014) Performance enhancement of diindenoperylene-based organic photovoltaic cells by nanocolumn-arrays. Org. Electron. 15:2210–2217. doi:10.1016/j.orgel.2014.06.023

    Article  CAS  Google Scholar 

  29. Salzmann I, Duhm S, Opitz R, Johnson RL, Rabe JP, Koch N (2008) Structural and electronic properties of pentacene-fullerene heterojunctions. J Appl Phys 104:114518. doi:10.1063/1.3040003

    Article  Google Scholar 

  30. Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158–162. doi:10.1038/nature01949

    Article  CAS  Google Scholar 

  31. Hinderhofer A, Schreiber F (2012) Organic-organic heterostructures: concepts and applications. ChemPhysChem 13:628–643. doi:10.1002/cphc.201100737

    Article  CAS  Google Scholar 

  32. Opitz A, Ecker B, Wagner J, Hinderhofer A, Schreiber F, Manara J, Pflaum J, Brütting W (2009) Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices. Org Electron 10:1259–1267. doi:10.1016/j.orgel.2009.07.004

    Article  CAS  Google Scholar 

  33. Hinderhofer A, Frank C, Hosokai T, Resta A, Gerlach A, Schreiber F (2011) Structure and morphology of coevaporated pentacene-peruoropentacene thin films. J Chem Phys 134:104702. doi:10.1063/1.3557476

    Article  CAS  Google Scholar 

  34. Reinhardt JP, Hinderhofer A, Broch K, Heinemeyer U, Kowarik S, Vorobiev A, Gerlach A, Schreiber F (2012) Structural and Optical Properties of Mixed Diindenoperylene–Perfluoropentacene Thin Films. J Phys Chem C 116:10917–10923. doi:10.1021/jp211947y

    Article  CAS  Google Scholar 

  35. Opitz A, Wagner J, Brütting W, Hinderhofer A, Schreiber F (2009) Molecular semiconductor blends: Microstructure, charge carrier transport, and application in photovoltaic cells. Phys Stat Sol A 206:2683–2694. doi:10.1002/pssa.200925238

    Article  CAS  Google Scholar 

  36. Gruber M, Rawolle M, Wagner J, Magerl D, Hörmann U, Perlich J, Roth SV, Opitz A, Schreiber F, Müller-Buschbaum P, Brütting W (2013) Correlating structure and morphology to device performance of molecular organic donor-acceptor photovoltaic cells based on diindenoperylene (DIP) and C 60. Adv Energy Mater 3:1075–1083. doi:10.1002/aenm.201201012

    Article  CAS  Google Scholar 

  37. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605–625. doi:10.1002/(SICI)1521-4095(199906)11:8¡605::AID-ADMA605¿3.0.CO;2-Q

    Article  CAS  Google Scholar 

  38. Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15:271–277. doi:10.1002/adma.200390065

    Article  CAS  Google Scholar 

  39. Koch N (2007) Organic electronic devices and their functional interfaces. ChemPhysChem 8:1438–1455. doi:10.1002/cphc.200700177

    Article  CAS  Google Scholar 

  40. Ueno N, Kera S (2008) Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog Surf Sci 83:490–557. doi:10.1016/j.progsurf.2008.10.002

    Article  CAS  Google Scholar 

  41. Wu C, Hirose Y, Sirringhaus H, Kahn A (1997) Electron-hole interaction energy in the organic molecular semiconductor PTCDA. Chem Phys Lett 272:43–47. doi:10.1016/S0009-2614(97)00481-8

    Article  CAS  Google Scholar 

  42. Oehzelt M, Koch N, Heimel G (2014) Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat Commun 5:4174. doi:10.1038/ncomms5174

    Article  CAS  Google Scholar 

  43. Wang H, Amsalem P, Heimel G, Salzmann I, Koch N, Oehzelt M (2014) Adv Mater 26:925–930. doi:10.1002/adma.201303467

    Article  CAS  Google Scholar 

  44. Akaike K, Koch N, Oehzelt M (2014) Fermi level pinning induced electrostatic fields and band bending at organic heterojunctions. Appl Phys Lett 105:223303. doi:10.1063/1.4903360

    Article  Google Scholar 

  45. Wilke A, Amsalem P, Frisch J, Bröker B, Vollmer A, Koch N (2011) Electric fields induced by energy level pinning at organic heterojunctions. Appl Phys Lett 98:123304. doi:10.1063/1.3571286

    Article  Google Scholar 

  46. Wagner J, Gruber M, Wilke A, Tanaka Y, Topczak K, Steindamm A, Hörmann U, Opitz A, Nakayama Y, Ishii H, Pflaum J, Koch N, Brütting W (2012) Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. J Appl Phys 111:054509. doi:10.1063/1.3692050

    Article  Google Scholar 

  47. Amsalem P, Niederhausen J, Wilke A, Heimel G, Schlesinger R, Winkler S, Vollmer A, Rabe J, Koch N (2013) Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Phys Rev B 87:035440. doi:10.1103/PhysRevB.87.035440

    Article  Google Scholar 

  48. Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells. Appl Phys Lett 79:126–128. doi:10.1063/1.1384001

    Article  CAS  Google Scholar 

  49. Steindamm A, Brendel M, Topczak AK, Pflaum J (2012) Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells. Appl Phys Lett 101:143302. doi:10.1063/1.4757297

    Article  Google Scholar 

  50. Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740–1747. doi:10.1021/ar9000923

    Article  CAS  Google Scholar 

  51. Heinemeyer U, Hinderhofer A, Alonso MI, Ossó JO, Garriga M, Kytka M, Gerlach A, Schreiber F (2008) Uniaxial anisotropy of organic thin films determined by ellipsometry. Phys Stat Sol A 205:927–930. doi:10.1002/pssa.200777765

    Article  CAS  Google Scholar 

  52. Heinemeyer U, Scholz R, Gisslén L, Alonso MI, Ossó JO, Garriga M, Hinderhofer A, Kytka M, Kowarik S, Gerlach A, Schreiber F (2008) Excitonphonon coupling in diindenoperylene thin films. Phys Rev B 78:085210. doi:10.1103/PhysRevB.78.085210

    Article  Google Scholar 

  53. Birkholz M (2006) Thin film analysis by X-ray scattering. Wiley-VCH, Weinheim

    Google Scholar 

  54. Tolan M (1999) X-ray scattering from soft-matter thin films: materials science and basic research. Springer tracts in modern physics. Springer, Berlin

    Google Scholar 

  55. Forrest SR, Kaplan ML, Schmidt PH (1984) Organic-on-inorganic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties. J Appl Phys 56:543–551. doi:10.1063/1.333944

    CAS  Google Scholar 

  56. Dürr AC, Schreiber F, Kelsch M, Carstanjen HD, Dosch H (2002) Morphology and thermal stability of metal contacts on crystalline organic thin films. Adv Mater 14:961–963. doi:10.1002/1521-4095(20020705)14:13/14¡961::AID-ADMA961¿3.0.CO;2-X

    Article  Google Scholar 

  57. Hinderhofer A, Gerlach A, Broch K, Hosokai T, Yonezawa K, Kato K, Kera S, Ueno N, Schreiber F (2013) Geometric and electronic structure of templated C 60 on diindenoperylene thin films. J Phys Chem C 117:1053–1058. doi:10.1021/jp3106056

    Article  CAS  Google Scholar 

  58. Hinderhofer A, Gerlach A, Kowarik S, Zontone F, Krug J, Schreiber F (2010) Smoothing and coherent structure formation in organic-organic heterostructure growth. Eur Phys Lett 91:56002. doi:10.1209/0295-5075/91/56002

    Article  Google Scholar 

  59. Aufderheide A, Broch K, Novák J, Hinderhofer A, Nervo R, Gerlach A, Banerjee R, Schreiber F (2012) Mixing-induced anisotropic correlations in molecular crystalline systems. Phys Rev Lett 109:156102. doi:10.1103/PhysRevLett.109.156102

    Article  CAS  Google Scholar 

  60. Kitaigorodsky A (1984) Mixed crystals. Springer series in solid-state sciences. Springer, Berlin

    Google Scholar 

  61. Broch K, Aufderheide A, Raimondo L, Sassella A, Gerlach A, Schreiber F (2013) Optical properties of blends: Influence of mixing-induced disorder in pentacene:diindenoperylene versus peruoropentacene:diindenoperylene. J Phys Chem C 117:13952–13960. doi:10.1021/jp4019487

    Article  CAS  Google Scholar 

  62. Banerjee R, Novák J, Frank C, Lorch C, Hinderhofer A, Gerlach A, Schreiber F. (2013) Evidence for kinetically limited thickness dependent phase separation in organic thin film blends. Phys Rev Lett 110:185506. doi:10.1103/PhysRevLett.110.185506

    Article  CAS  Google Scholar 

  63. Broch K, Gerlach A, Lorch C, Dieterle J, Novák J, Hinderhofer A, Schreiber F (2013) Structure formation in peruoropentacene:diindenoperylene blends and its impact on transient effects in the optical properties studied in realtime during growth. J Chem Phys 139:174709. doi:10.1063/1.4827868

    Article  CAS  Google Scholar 

  64. Broch K, Bürker C, Dieterle J, Krause S, Gerlach A, Schreiber F (2013) Impact of molecular tilt angle on the absorption spectra of pentacene:peruoropentacene blends. Phys Stat Sol RRL 7:1084–1088. doi:10.1002/pssr.201308085

    Article  CAS  Google Scholar 

  65. Topczak AK, Roller T, Engels B, Brütting W, Pflaum J (2014) Nonthermally activated exciton transport in crystalline organic semiconductor thin films. Phys Rev B 89:201203(R). doi:10.1103/PhysRevB.89.201203

    Google Scholar 

  66. Lunt RR, Benziger JB, Forrest SR (2010) Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv Mater 22:1233–1236. doi:10.1002/adma.200902827

    Article  CAS  Google Scholar 

  67. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723. doi:10.1063/1.1534621

    Article  CAS  Google Scholar 

  68. Lunt RR, Giebrink NC, Belak AA, Benziger JB, Forrest SR (2009) Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J Appl Phys 105:1233–1236. doi:10.1063/1.3079797

    Article  Google Scholar 

  69. Brendel M, Krause S, Steindamm A, Topczak AK, Sundarraj S, Erk P, Höhla S, Fruehauf N, Koch N, Pflaum J (2015) The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C-60 bilayer photovoltaic cells. Adv Mater 25:1565–1573. doi:10.1002/adfm.201404434

    CAS  Google Scholar 

  70. Dürr AC, Schreiber F, Ritley KA, Kruppa V, Krug J, Dosch H, Struth B (2003) Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene). Phys Rev Lett 90:016104. doi:10.1103/PhysRevLett.90.016104

    Article  Google Scholar 

  71. Ghosh AK, Feng T (1978) Merocyanine organic solar cells. J Appl Phys 49:5982–5989. doi:10.1063/1.324566

    Article  CAS  Google Scholar 

  72. Settels V, Liu WL, Pflaum J, Fink RF, Engels B (2012) Comparison of the electronic structure of different perylene-based dye-aggregates. J Comput Chem 33:1544–1553. doi:10.1002/jcc.22986

    Article  CAS  Google Scholar 

  73. Settels V, Schubert A, Tafipolski M, Liu WL, Stehr V, Topczak AK, Pflaum J, Deibel C, Fink RF, Engel V, Engels B (2014) Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors. J Am Chem Soc 136:9327–9337. doi:10.1021/ja413115h

    Article  CAS  Google Scholar 

  74. Gieseking B, Schmeiler T, Müller B, Deibel C, Engels B, Dyakonov V, Pflaum J (2014) Effects of characteristic length scales on the exciton dynamics in rubrene single crystals. Phys Rev B 90:205305. doi:10.1103/PhysRevB.90.205305

    Article  Google Scholar 

  75. Schuenemann C, Petrich A, Schulze R, Wynands D, Meiss J, Hein MP, Jankowski J, Elschner C, Alex J, Hummert M, Eichhorn KJ, Leo K, Riede M (2013) Diindenoperylene derivatives: a model to investigate the path from molecular structure via morphology to solar cell performance. Org Electron 14:1704–1714. doi:10.1016/j.orgel.2013.04.006

    Article  CAS  Google Scholar 

  76. Hansen NH, Wunderlich C, Topczak AK, Rohwer E, Schwoerer H, Pflaum J (2013) Exciton interaction with a spatially defined charge accumulation layer in the organic semiconductor diindenoperylene. Phys Rev B 87:241202(R). doi:10.1103/PhysRevB.87.241202

    Google Scholar 

  77. Due to the notation of the relative quenching per cent, the nonradiative recombination rate cited in Ref. [76] has to be divided by a factor of 100.

    Google Scholar 

  78. Hörmann U, Wagner J, Gruber M, Opitz A, Brütting W (2011) Approaching the ultimate open circuit voltage in thiophene based single junction solar cells by applying diindenoperylene as acceptor. Phys Stat Sol RRL 5:241–243. doi:10.1002/pssr.201105238

    Article  Google Scholar 

  79. Hörmann U, Kraus J, Gruber M, Schuhmair C, Linderl T, Grob S, Kapfinger S, Klein K, Stutzman M, Krenner H, Brütting W (2013) Quantification of energy losses in organic solar cells from temperature-dependent device characteristics. Phys Rev B 88:235307. doi:10.1103/PhysRevB.88.235307

    Article  Google Scholar 

  80. Hörmann U, Lorch C, Hinderhofer A, Gerlach A, Gruber M, Kraus J, Sykora B, Grob S, Linderl T, Wilke A, Opitz A, Hansson R, Anselmo AS, Ozawa Y, Nakayama Y, Ishii H, Koch N, Moons E, Schreiber F, Brütting W (2014) V OC from a morphology point of view: the influence of molecular orientation on the open circuit voltage of organic planar heterojunction solar cells. J Phys Chem C 118:26462–26470. doi:10.1021/jp506180k

    Article  Google Scholar 

  81. Horlet M, Kraus M, Brütting W, Opitz A (2011) Diindenoperylene as ambipolar semiconductor: influence of electrode materials and mobility asymmetry in organic field-effect transistors. Appl Phys Lett 98:233304. doi:10.1063/1.3598423

    Article  Google Scholar 

  82. Gruber M, Wagner J, Klein K, Hörmann U, Opitz A, Stutzmann M, Brütting W (2012) Thermodynamic efficiency limit of molecular donor-acceptor solar cells and its application to diindenoperylene/C60-based planar heterojunction devices. Adv Energy Mater 2:1100–1108. doi:10.1002/aenm.201200077

    Article  CAS  Google Scholar 

  83. Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi:10.1103/PhysRevB.76.085303

    Article  Google Scholar 

  84. Widmer J, Tietze M, Leo K, Riede M (2013) Open-circuit voltage and effective gap of organic solar cells. Adv Funct Mater 23:5814–5821. doi:10.1002/adfm.201301048

    Article  CAS  Google Scholar 

  85. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2009) On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat Mater 8:904–909. doi:10.1038/nmat2548

    Article  CAS  Google Scholar 

  86. Tvingstedt K, Malinkiewicz O, Baumann A, Deibel C, Snaith HJ, Dyakonov V, Bolink HJ (2014) Radiative efficiency of lead iodide based perovskite solar cells. Sci Rep 4:6071. doi:10.1038/srep06071

    Article  CAS  Google Scholar 

  87. King RR, Bhusari D, Boca A, Larrabee D, Liu XQ, Hong W, Fetzer CM, Law DC, Karam NH (2011) Band gap-voltage offset and energy production in next-generation multijunction solar cells. Prog Photovolt Res Appl 19:797–812. doi:10.1002/pip.1044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Opitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Opitz, A. et al. (2017). Charge Separation at Nanostructured Molecular Donor–Acceptor Interfaces. In: Leo, K. (eds) Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-28338-8_4

Download citation

Publish with us

Policies and ethics