Advertisement

Synthesis of Conjugated Polymers with Complex Architecture for Photovoltaic Applications

  • Anton Kiriy
  • Frederik C. Krebs
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

A common approach to bulk heterojunction solar cells involves a “trial-and-error” approach in finding optimal kinetically unstable morphologies. An alternative approach assumes the utilization of complex polymer architectures, such as donor–acceptor block copolymers. Because of a covalent preorganization of the donor and acceptor components, these materials may form desirable morphologies at thermodynamic equilibrium. This chapter reviews synthetic approaches to such architectures and shows the first photovoltaic results.

Keywords

Catalyst-transfer polycondensation Covalent preorganization Donor-acceptor block copolymer Grafting-from Grafting-through Grafting-to Hairy particles Morphology PCBM Self-assembly Suzuki chain-growth polycondensation 

Notes

Acknowledgments

We gratefully acknowledge support from DFG within SPP 1355, “Elementary Processes of Organic Photovoltaics,” grant number KI-1094/4.

References

  1. 1.
    Mandoc MM, Veurman W, Sweelssen J, Koetse MM, Blom PWM (2007) Appl Phys Lett 91:073518CrossRefGoogle Scholar
  2. 2.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222CrossRefGoogle Scholar
  3. 3.
    Shuttle CG, Hamilton R, Nelson J, O'Regan BC, Durrant JR (2010) Adv Funct Mater 20:698CrossRefGoogle Scholar
  4. 4.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617CrossRefGoogle Scholar
  5. 5.
    Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photonics 3:297CrossRefGoogle Scholar
  6. 6.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Adv Funct Mater 17:1636CrossRefGoogle Scholar
  7. 7.
    Liu J, Chen L, Gao B, Cao X, Han Y, Xie Z, Wang L (2013) J Mater Chem A 1:6216CrossRefGoogle Scholar
  8. 8.
    Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC (2006) Appl Phys Lett 89:252105CrossRefGoogle Scholar
  9. 9.
    Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) Adv Mater 22, E135CrossRefGoogle Scholar
  10. 10.
    Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Nat Mater 6:497CrossRefGoogle Scholar
  11. 11.
    Yassara A, Miozzoa L, Girondaa R, Horowitz G (2013) Prog Polym Sci 38:791CrossRefGoogle Scholar
  12. 12.
    Segalman RA, McCulloch B, Kirmayer S, Urban JJ (2009) Macromolecules 42:9205CrossRefGoogle Scholar
  13. 13.
    Sommer M, Lindner SM, Thelakkat M (2007) Adv Funct Mater 17:1493CrossRefGoogle Scholar
  14. 14.
    Linder SM, Hüttner S, Chiche A, Thelakkat M, Krausch G (2006) Angew Chem Int Ed 45:3364CrossRefGoogle Scholar
  15. 15.
    Hüttner S, Sommer M, Chiche A, Krausch G, Steiner U, Thelakkat M (2009) Soft Matter 5:4206CrossRefGoogle Scholar
  16. 16.
    Sommer M, Lang AS, Thelakkat M (2008) Angew Chem Int Ed 47:7901CrossRefGoogle Scholar
  17. 17.
    Lohwasser RH, Gupta G, Kohn P, Sommer M, Lang AS, Thurn-Albrecht T, Thelakkat M (2013) Macromolecules 46:4403CrossRefGoogle Scholar
  18. 18.
    Ball ZT, Sivula K, Fréchet JMJ (2006) Macromolecules 39:70CrossRefGoogle Scholar
  19. 19.
    Zachary KS, Ball T, Watanabe N, Fréchet JMJ (2006) Adv Mater 18:206CrossRefGoogle Scholar
  20. 20.
    Lee JU, Cirpan A, Emrick T, Russell TP, Jo WH (2009) J Mater Chem 19:1483CrossRefGoogle Scholar
  21. 21.
    Dong X-H, Zhang W-B, Li Y, Huang M, Zhang S, Quirk RP, Cheng SZD (2012) Polym Chem 3:124CrossRefGoogle Scholar
  22. 22.
    Heuken M, Komber H, Voit B (2012) Macromol Chem Phys 213:97CrossRefGoogle Scholar
  23. 23.
    Heuken M, Komber H, Erdmann T, Senkovskyy V, Kiriy A, Voit B (2012) Macromolecules 45:4101CrossRefGoogle Scholar
  24. 24.
    Bu LJ, Guo XY, Yu B, Qu Y, Xie ZY, Yan DH, Geng YH, Wang FS (2009) J Am Chem Soc 131:13242CrossRefGoogle Scholar
  25. 25.
    Tu G, Li H, Forster M, Heiderhoff R, Balk LJ, Scherf U (2006) Macromolecules 39:4327CrossRefGoogle Scholar
  26. 26.
    Scherf U, Gutacker A, Koenen N (2008) Acc Chem Res 41:1086 and references hereinGoogle Scholar
  27. 27.
    Woody KB, Leever BJ, Durstock MF, Collard DM (2011) Macromolecules 44:4690CrossRefGoogle Scholar
  28. 28.
    Sommer M, Komber H, Huettner S, Mulherin R, Kohn P, Greenham NC, Huck WTS (2012) Macromolecules 45:4142CrossRefGoogle Scholar
  29. 29.
    Mulherin RC, Jung S, Huettner S, Johnson K, Kohn R, Sommer M, Allard S, Scherf U, Greenham NC (2011) Nano Lett 11:4846CrossRefGoogle Scholar
  30. 30.
    Verduzco R, Botiz I, Pickel DL, Kilbey SM II, Hong K, Dimasi E, Darling SB (2011) Macromolecules 44:530CrossRefGoogle Scholar
  31. 31.
    Botiz I, Schaller RD, Verduzco R, Darling SB (2011) J Phys Chem C 115:9260CrossRefGoogle Scholar
  32. 32.
    Nakabayashiand K, Mori H (2012) Macromolecules 45:9618CrossRefGoogle Scholar
  33. 33.
    Lin YH, Smith KA, Kempf CN, Verduzco R (2013) Polym Chem 4:229CrossRefGoogle Scholar
  34. 34.
    Guo C, Lin YH, Witman MD, Smith KA, Wang C, Hexemer A, Strzalka J, Gomez ED, Verduzco R (2013) Nano Lett 13:2957CrossRefGoogle Scholar
  35. 35.
    Wang J, Lu C, Mizobe T, Ueda M, Chen WC, Higashihara T (2013) Macromolecules 46:1783CrossRefGoogle Scholar
  36. 36.
    Wang J, Ueda M, Higashihara T (2013) ACS MacroLett 2:506Google Scholar
  37. 37.
    Iovu MC, Sheina EE, Gil RR, McCullough RD (2005) Macromolecules 38:8649CrossRefGoogle Scholar
  38. 38.
    Miyakoshi R, Yokoyama A, Yokozawa T (2005) J Am Chem Soc 127:17542CrossRefGoogle Scholar
  39. 39.
    Kiriy A, Senkovskyy V, Sommer M (2011) Macromol Rapid Commun 32:1503CrossRefGoogle Scholar
  40. 40.
    Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A (2009) Nature 457:679CrossRefGoogle Scholar
  41. 41.
    Erdmann T, Back J, Tkachov R, Ruff A, Voit B, Ludwigs S, Kiriy A (2014) Polym Chem 5:5383CrossRefGoogle Scholar
  42. 42.
    Tkachov R, Senkovskyy V, Komber H, Sommer J-U, Kiriy A (2010) J Am Chem Soc 132:7803CrossRefGoogle Scholar
  43. 43.
    Liu J, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) J Am Chem Soc 126:6550Google Scholar
  44. 44.
    Senkovskyy V, Khanduyeva N, Komber H, Oertel U, Stamm M, Kuckling D, Kiriy A (2007) J Am Chem Soc 129:6626CrossRefGoogle Scholar
  45. 45.
    Khanduyeva N, Senkovskyy V, Beryozkina T, Horecha M, Stamm M, Uhrich C, Riede M, Leo K, Kiriy A (2009) J Am Chem Soc 131:153CrossRefGoogle Scholar
  46. 46.
    Beryozkina T, Boyko K, Khanduyeva N, Senkovskyy V, Horecha M, Oertel U, Simon F, Komber H, Stamm M, Kiriy A (2009) Angew Chem Int Ed 48:2695CrossRefGoogle Scholar
  47. 47.
    Senkovskyy V, Tkachov R, Beryozkina T, Komber H, Oertel U, Horecha M, Bocharova V, Stamm M, Gevorgyan SA, Krebs FC, Kiriy A (2009) J Am Chem Soc 131:16445CrossRefGoogle Scholar
  48. 48.
    Senkovskyy V, Sommer M, Komber H, Tkachov R, Huck W, Kiriy A (2010) Macromolecules 43:10157CrossRefGoogle Scholar
  49. 49.
    Senkovskyy V, Senkovska I, Kiriy A (2012) ACS Macro Lett 1:494CrossRefGoogle Scholar
  50. 50.
    Komber H, Senkovskyy V, Tkachov R, Johnson K, Kiriy A, Huck WTS, Sommer M (2011) Macromolecules 44:9164CrossRefGoogle Scholar
  51. 51.
    Krebs FC, Senkovsky V, Kiriy A (2010) IEEE J Sel Top Quantum Electron 16:1821CrossRefGoogle Scholar
  52. 52.
    Elmalem E, Kiriy A, Huck WTS (2011) Macromolecules 44:9057CrossRefGoogle Scholar
  53. 53.
    Senkovskyy V, Tkachov R, Komber H, Sommer M, Heuken M, Voit B, Huck WTS, Kataev V, Petr A, Kiriy A (2011) J Am Chem Soc 131:19966CrossRefGoogle Scholar
  54. 54.
    Senkovskyy V, Tkachov R, Komber H, John A, Sommer J-U, Kiriy A (2012) Macromolecules 45:7770CrossRefGoogle Scholar
  55. 55.
    Tkachov R, Senkovskyy V, Beryozkina T, Boyko K, Bakulev V, Lederer A, Sahre K, Voit B, Kiriy A (2014) Angew Chem Int Ed 53:2402CrossRefGoogle Scholar
  56. 56.
    Tkachov R, Karpov Y, Senkovskyy V, Raguzin I, Zessin J, Lederer A, Stamm M, Voit B, Beryozkina T, Bakulev V, Zhao W, Facchetti A, Kiriy A (2014) Macromolecules 47:3845CrossRefGoogle Scholar
  57. 57.
    Karpov Y, Zhao W, Raguzin I, Beryozkina T, Bakulev V, Al-Hussein M, Häußler L, Stamm M, Voit B, Facchetti A, Tkachov R, Kiriy A (2015) ACS Appl Mater Interfaces 7:12478CrossRefGoogle Scholar
  58. 58.
    Tremel K, Fischer FSU, Kayunkid N, Di Pietro R, Tkachov R, Kiriy A, Neher D, Ludwigs S, Brinkmann M (2014) Adv Energy Mater 4:1301659CrossRefGoogle Scholar
  59. 59.
    Chen Z, Zheng Y, Yan H, Facchetti A (2009) J Am Chem Soc 131:8CrossRefGoogle Scholar
  60. 60.
    Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K (2011) Angew Chem 50:2799CrossRefGoogle Scholar
  61. 61.
    Hwang Y-J, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA (2015) J Am Chem Soc 137:4424CrossRefGoogle Scholar
  62. 62.
    Liu W, Tkachov R, Komber H, Senkovskyy V, Schubert M, Neher D, Zhao W, Facchetti A, Kiriy A (2014) Polym Chem 5:3404CrossRefGoogle Scholar
  63. 63.
    Schubert M, Dolfen D, Frisch J, Roland S, Steyrleuthner R, Stiller B, Chen Z, Scherf U, Koch N, Facchetti A, Neher D (2012) Adv Energy Mater 2:369CrossRefGoogle Scholar
  64. 64.
    Tkachov R, Komber H, Rauch S, Lederer A, Oertel U, Häußler L, Voit B, Kiriy A (2014) Macromolecules 47:4994CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Polymer StructuresLeibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany
  2. 2.DTU ENERGY, Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark

Personalised recommendations