Advertisement

Critical Dimensions in Small-Molecule Plasmonic Particle Solar Cells

  • Till Jägeler-HoheiselEmail author
  • Johannes Benduhn
  • Christian Körner
  • Karl Leo
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

In this review, we summarize design principles of organic solar cells with plasmonic nanostructures. A process for scalable vacuum processing of silver nanoparticles is presented. Approximations for losses inside plasmonic structures are derived with respect to particle size and absorber material. We evaluate the characteristic length scales of plasmonic near-field enhancement and backscattering. The thickness of the absorber layers can be significantly reduced in plasmonic devices showing increased power conversion efficiency. The strongest plasmonic effects are observed in coupling particle structures.

Keywords

Absorber layer thickness Absorption effciency Backscattering Charge extraction Coupling plasmonic particles Coupling of plasmonic particles to absorbing media Device stack Dipolar plasmonic resonance in dispersive media Dipolar resonance Extinction efficiency Fill factor Forward scattering Infra-red Inter-particle spacing Modified long-wavelength approach Morphology in plasmonic organic solar cells Nanotechnology Near-field effect Near-field enhancement Particle aspect ratio Particle density Particle growth Particle growth after seeding Particle position Particle size Passivation of plasmonic particles Phase of plasmonic resonance Photocurrent Plasmonic device concepts Plasmonic solar cell Polarizability Reflection Reflection at plasmonic particles Scattering efficiency Semiconductor bandgap Silver particle deposition Spectral overlap Splitting of plasmonic resonance Vollmer-weber growth 

Notes

Acknowledgments

We gratefully acknowledge L.M. Eng, M.C. Gather, and M. Riede for fruitful discussions, T. Günther and A. Wendel for sample preparation, S. Goldberg for SEM images, and the DFG for funding via SPP 1355.

References

  1. 1.
    Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M (2014) 25th anniversary article: rise to power – OPV-based solar sprks. Adv Mater 26(1):29–39. doi:10.1002/adma.201302031. http://dx.doi.org/10.1002/adma.201302031 CrossRefGoogle Scholar
  2. 2.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:2411-1–2411-10. http://dx.doi.org/10.1038/ncomms2411
  3. 3.
    Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y (2015) Small-molecule solar cells with efficiency over 9%. Nat Photonics 9(1):35–41. http://dx.doi.org/10.1038/nphoton.2014.269 CrossRefGoogle Scholar
  4. 4.
    Meerheim R, Körner C, Leo K (2014) Highly efficient organic multi-junction solar cells with a Thiophene based donor material. Appl Phys Lett 105(6):063306-1-063306-4. doi:http://dx.doi.org/10.1063/1.4893012. http://scitation.aip.org/content/aip/journal/apl/105/6/10.1063/1.4893012
  5. 5.
    Haijun Fan XZ (2015) Development of small-molecule materials for high-performance organic solar cells. Sci China Chem 58(6):922-936. doi:10.1007/s11426-015-5418-6. http://chem.scichina.com:8081/sciBe/EN/Y2015/V58/I6/922 CrossRefGoogle Scholar
  6. 6.
    Donges A (1998) The coherence length of black-body radiation. Eur J Phys 19(3):245-249. http://stacks.iop.org/0143-0807/19/i=3/a=006 CrossRefGoogle Scholar
  7. 7.
    Selzer F, Weiß N, Kneppe D, Bormann L, Sachse C, Gaponik N, Eychmüller, A, Leo K, Müller-Meskamp L (2015) A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale 7:2777-2783. doi:10.1039/C4NR06502F. http://dx.doi.org/10.1039/C4NR06502F CrossRefGoogle Scholar
  8. 8.
    Selzer F, Weiß N, Bormann L, Sachse C, Gaponik N, Müller-Meskamp L, Eychmüller A, Leo K (2014) Highly conductive silver nanowire networks by organic matrix assisted low-temperature fusing. Org Electron 15(12):3818-3824. doi:http://dx.doi.org/10.1016/j.orgel.2014.09.030. http://www.sciencedirect.com/science/article/pii/S1566119914004224
  9. 9.
    Schubert S, Müller-Meskamp L, Leo K (2014) Unusually high optical transmission in Ca:Ag blend films: high-performance top electrodes for efficient organic solar cells. Adv Funct Mater 24(42):6668-6676. doi:10.1002/adfm.201401854. http://dx.doi.org/10.1002/adfm.201401854 CrossRefGoogle Scholar
  10. 10.
    Schubert S, Hermenau M, Meiss J, Müller-Meskamp L, Leo K (2012) Oxide sandwiched metal thin-film electrodes for long-term stable organic solar cells. Adv Funct Mater 22(23):4993-4999. doi:10.1002/adfm.201201592. http://dx.doi.org/10.1002/adfm.201201592 CrossRefGoogle Scholar
  11. 11.
    Schubert S, Meiss J, Müller-Meskamp L, Leo K (2013) Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv Energy Mater 3(4):438-443. doi:10.1002/aenm.201200903. http://dx.doi.org/10.1002/aenm.201200903 CrossRefGoogle Scholar
  12. 12.
    Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22(43):4794-4808. doi:10.1002/adma.201000488. http://dx.doi.org/10.1002/adma.201000488 CrossRefGoogle Scholar
  13. 13.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205-213. doi:10.1038/nmat2629. http://www.nature.com/doifinder/10.1038/nmat2629 CrossRefGoogle Scholar
  14. 14.
    Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16(4):133-146. doi:http://dx.doi.org/10.1016/j.mattod.2013.04.006. http://www.sciencedirect.com/science/article/pii/S1369702113001065
  15. 15.
    You J, Li X, Xie FX, Sha WEI, Kwong JHW, Li G, Choy WCH, Yang Y (2012) Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv Funct Mater 2(10):426-432. doi:10.1002/aenm.201200108. http://dx.doi.org/10.1002/aenm.201200108 Google Scholar
  16. 16.
    Sykes ME, Barito A, Amonoo JA, Green PF, Shtein M (2014) Broadband plasmonic photocurrent enhancement in planar organic photovoltaics embedded in a metallic nanocavity. Adv Funct Mater 4(11):1301937-1–1301937-9. doi:10.1002/aenm.201301937. http://dx.doi.org/10.1002/aenm.201301937
  17. 17.
    Hayashi S, Kozaru K, Yamamoto K (1991) Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar. Solid State Commun 79(9):763-767. doi:10.1016/0038-1098(91)90792-T. http://www.sciencedirect.com/science/article/pii/003810989190792T CrossRefGoogle Scholar
  18. 18.
    Morfa AJ, Rowlen KL, Reilly TH, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92(1):013504-1–013504-4. doi:10.1063/1.2823578Google Scholar
  19. 19.
    Numazawa S, Ranjan M, Heinig KH, Facsko S, Smith R (2011) Ordered Ag nanocluster structures by vapor deposition on pre-patterned SiO2. J Phys Condens Matter 23(22):222203-1–222203-5. doi:10.1088/0953-8984/23/22/222203. http://iopscience.iop.org/0953-8984/23/22/222203
  20. 20.
    Rivera TP, Lecarme O, Hartmann J, Inglebert R, Peyrade D (2009) Spectroscopic studies of plasmonic interactions in colloidal dimers fabricated by convective-capillary force assembly. Microelectron Eng 86(4–6):1089-1092. doi:http://dx.doi.org/10.1016/j.mee.2008.11.015. http://www.sciencedirect.com/science/article/pii/S0167931708005212
  21. 21.
    Lecarme O, Pinedo-Rivera T, Berton K, Berthier J, Peyrade D (2011) Plasmonic coupling in nondipolar gold colloidal dimers. Appl Phys Lett 98(8):083122-1–083122-3. doi:http://dx.doi.org/10.1063/1.3560456. http://scitation.aip.org/content/aip/journal/apl/98/8/10.1063/1.3560456
  22. 22.
    Cordeiro J, Zelsmann M, Honegger T, Picard E, Hadji E, Peyrade D (2015) Table-top deterministic and collective colloidal assembly using videoprojector lithography. Appl Surf Sci 349(0):452-458. doi:http://dx.doi.org/10.1016/j.apsusc.2015.04.223. http://www.sciencedirect.com/science/article/pii/S0169433215011046
  23. 23.
    Müller-Meskamp L, Schubert S, Roch T, Eckhardt S, Lasagni AF, Leo K (2015) Transparent conductive metal thin-film electrodes structured by direct laser interference patterning. Adv Eng Mater. pp. 1215-1219. doi:10.1002/adem.201400454. http://dx.doi.org/10.1002/adem.201400454
  24. 24.
    Wang J, Lee YJ, Chadha AS, Yi J, Jespersen ML, Kelley JJ, Nguyen HM, Nimmo M, Malko AV, Vaia RA, Zhou W, Hsu JWP (2013) Effect of plasmonic Au nanoparticles on inverted organic solar cell performance. J Phys Chem C 117(1):85-91. doi:10.1021/jp309415u. http://dx.doi.org/10.1021/jp309415u CrossRefGoogle Scholar
  25. 25.
    Li X, Choy WCH, Huo L, Xie F, Sha WEI, Ding B, Guo X, Li Y, Hou J, You J, Yang Y (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater (Weinheim Ger) 24(22):3046-3052. doi:10.1002/adma.201200120. http://dx.doi.org/10.1002/adma.201200120 CrossRefGoogle Scholar
  26. 26.
    Baek SW, Park G, Noh J, Cho C, Lee CH, Seo MK, Song H, Lee JY (2014) Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 8(4):3302-3312. doi:10.1021/nn500222q. http://dx.doi.org/10.1021/nn500222q CrossRefGoogle Scholar
  27. 27.
    Sachse C, Müller-Meskamp L, Bormann L, Kim YH, Lehnert F, Philipp A, Beyer B, Leo K (2013) Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells. Org Electron 14(1):143-148. doi:http://dx.doi.org/10.1016/j.orgel.2012.09.032. http://www.sciencedirect.com/science/article/pii/S1566119912004582
  28. 28.
    Baek SW, Noh J, Lee CH, Kim B, Seo MK, Lee JY (2013) Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method. Sci Rep 3:1726-1–1726-7. http://dx.doi.org/10.1038/srep01726
  29. 29.
    Jung K, Song HJ, Lee G, Ko Y, Ahn K, Choi H, Kim JY, Ha K, Song J, Lee JK, Lee C, Choi M (2014) Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8(3):2590-2601. doi:10.1021/nn500276n. http://pubs.acs.org/doi/abs/10.1021/nn500276n CrossRefGoogle Scholar
  30. 30.
    Wu B, Wu X, Guan C, Fai Tai K, Yeow EKL, Jin Fan H, Mathews N, Sum TC (2013) Uncovering loss mechanisms in silver nanoparticle- blended plasmonic organic solar cells. Nat Commun 4:3004-1–3004-7. http://dx.doi.org/10.1038/ncomms3004
  31. 31.
    Fung DDS, Qiao L, Choy WCH, Wang C, Sha WEI, Xie F, He S (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer. J Mater Chem 21(41):16349-16356. doi:10.1039/C1JM12820E. http://pubs.rsc.org/en/content/articlelanding/2011/jm/c1jm12820e CrossRefGoogle Scholar
  32. 32.
    Yao K, Salvador M, Chueh CC, Xin XK, Xu YX, deQuilettes DW, Hu T, Chen Y, Ginger DS, Jen AKY (2014) A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv Funct Mater 4(9):1400206-1–1400206-7. doi:10.1002/aenm.201400206. http://dx.doi.org/10.1002/aenm.201400206
  33. 33.
    Lilliu S, Alsari M, Bikondoa O, Emyr Macdonald J, Dahlem MS (2015) Absence of structural impact of noble nanoparticles on P3HT:PCBM blends for plasmon-enhanced bulk-heterojunction organic solar cells probed by synchrotron GI-XRD. Sci Rep 5:10633-1–10633-10. http://dx.doi.org/10.1038/srep10633
  34. 34.
    Xue M, Li L, Tremolet de Villers BJ, Shen H, Zhu J, Yu Z, Stieg AZ, Pei Q, Schwartz BJ, Wang KL (2011) Charge-carrier dynamics in hybrid plasmonic organic solar cells With Ag nanoparticles. Appl Phys Lett 98:253302-1–253302-3. doi:10.1063/1.3601742Google Scholar
  35. 35.
    Niesen B, Rand BP, Van Dorpe P, Cheyns D, Tong L, Dmitriev A, Heremans P (2013) Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode. Adv Energy Mater 3(2):145-150. doi:10.1002/aenm.201200289. http://dx.doi.org/10.1002/aenm.201200289 CrossRefGoogle Scholar
  36. 36.
    Volmer M, Weber A (1926) Keimbildung in Übersättigten Gebilden. Zeitschrift für Physikalische Chemie 119(4):277-301Google Scholar
  37. 37.
    Jägeler-Hoheisel T, Schwab T, Schubert S, Riede M, Leo K (2014) Verfahren zum herstellen eines organischen bauelementes sowie organisches bauelement. Patent Application. https://patentscope.wipo.int/search/en/WO2014094741
  38. 38.
    Metois JJ, Spiller GDT, Venables JA (1982) Lead on graphite: equilibrium shape, crystal growth, melting and the early stages of oxidation. Philos Mag A 46(6):1015-1022. doi:10.1080/01418618208236947. http://dx.doi.org/10.1080/01418618208236947 CrossRefGoogle Scholar
  39. 39.
    Jägeler-Hoheisel T, Selzer F, Riede M, Leo K (2014) Direct electrical evidence of plasmonic near-field enhancement in small molecule organic solar cells. J Phys Chem C 118(28):15128-15135. doi:10.1021/jp5025087. http://dx.doi.org/10.1021/jp5025087 CrossRefGoogle Scholar
  40. 40.
    Meiss J, Merten A, Hein M, Schuenemann C, Schäfer S, Tietze M, Uhrich C, Pfeiffer M, Leo K, Riede M (2012) Fluorinated zinc phthalocyanine as donor for efficient vacuum-deposited organic solar cells. Adv Funct Mater 22(2):405-414. doi:10.1002/adfm.201101799. http://doi.wiley.com/10.1002/adfm.201101799 CrossRefGoogle Scholar
  41. 41.
    Moroz A (2009) Depolarization field of spheroidal particles. J Opt Soc Am B 26(3):517-527. doi:10.1364/JOSAB.26.000517. http://josab.osa.org/abstract.cfm?URI=josab-26-3-517 CrossRefGoogle Scholar
  42. 42.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem 109(3):1079-1087. doi:10.1021/jp049084e. http://dx.doi.org/10.1021/jp049084e CrossRefGoogle Scholar
  43. 43.
    Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond rayleigh approximation. Appl Phys Lett 83(22):4625-4627. doi:http://dx.doi.org/10.1063/1.1630351. http://scitation.aip.org/content/aip/journal/apl/83/22/10.1063/1.1630351
  44. 44.
    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271-5283. doi:10.1364/AO.37.005271. http://ao.osa.org/abstract.cfm?URI=ao-37-22-5271 CrossRefGoogle Scholar
  45. 45.
    Schünemann C, Wynands D, Wilde L, Hein MP, Pfützner S, Elschner C, Eichhorn KJ, Leo K, Riede M (2012) Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C 60. Phys Rev B 85:245314. doi:10.1103/PhysRevB.85.245314. http://link.aps.org/doi/10.1103/PhysRevB.85.245314 CrossRefGoogle Scholar
  46. 46.
    Zengin G, Johansson G, Johansson P, Antosiewicz TJ, Käll M, Shegai T (2013) Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci Rep 3:3074-1–3074-8. http://dx.doi.org/10.1038/srep03074
  47. 47.
    Spinelli P, Polman A (2012) Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt Express 20(S5):A641-A654. doi:10.1364/OE.20.00A641. http://www.opticsexpress.org/abstract.cfm?URI=oe-20-105-A641 CrossRefGoogle Scholar
  48. 48.
    Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys N Y 96(12):7519-7526. doi:10.1063/1.1812589. http://link.aip.org/link/JAPIAU/v96/i12/p7519/s1&Agg=doi CrossRefGoogle Scholar
  49. 49.
    Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131(24):8407-8409. doi:10.1021/ja9022072. http://dx.doi.org/10.1021/ja9022072 CrossRefGoogle Scholar
  50. 50.
    Härtling T, Reichenbach P, Eng LM (2007) Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle. Opt Express 15(20):12806-12817. doi:10.1364/OE.15.012806. http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-12806 CrossRefGoogle Scholar
  51. 51.
    Kraner S, Widmer J, Benduhn J, Hieckmann E, Jägeler-Hoheisel T, Ullbrich S, Schütze D, Radke KS, Cuniberti G, Ortmann F, Lorenz-Rothe M, Spoltore D, Meerheim R, Vandewal K, Koerner C, Leo K (2015) Influence of side groups on the performance of infrared absorbing aza-BODIPY organic solar cells. Phys Status Solidi (a) pp. 2747-2753. doi:10.1002/pssa.v212.12Google Scholar
  52. 52.
    Cnops K, Rand BP, Cheyns D, Verreet B, Empl MA, Heremans P (2014) 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat Commun 5:4406-1–4406-6. http://dx.doi.org/10.1038/ncomms4406
  53. 53.
    Scholz R, Luschtinetz R, Seifert G, Jägeler-Hoheisel T, Körner C, Leo K, Rapacioli M (2013) Quantifying charge transfer energies at donor–acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. J Phys Condens Matter 25(47):473201-1–473201-21. http://stacks.iop.org/0953-8984/25/i=47/a=473201
  54. 54.
    Teulle A, Bosman M, Girard C, Gurunatha KL, Li M, Mann S, Dujardin E (2015) Multimodal plasmonics in fused colloidal networks. Nat Mater 14(1):87-94. http://dx.doi.org/10.1038/nmat4114.CrossRefGoogle Scholar
  55. 55.
    Park HI, Lee S, Lee JM, Nam SA, Jeon T, Han SW, Kim SO (2014) High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters. ACS Nano 8(10):10305-10312. doi:10.1021/nn503508p. http://dx.doi.org/10.1021/nn503508p CrossRefGoogle Scholar
  56. 56.
    Jägeler-Hoheisel T, Cordeiro J, Lecarme O, Cuche A, Girard C, Dujardin E, Peyrade D, Arbouet A (2013) Plasmonic shaping in gold nanoparticle three-dimensional assemblies. J Phys Chem C 117(44):23126-23132. doi:10.1021/jp406410k. http://pubs.acs.org/doi/abs/10.1021/jp406410k CrossRefGoogle Scholar
  57. 57.
    Wang DH, Park KH, Seo JH, Seifter J, Jeon JH, Kim JK, Park JH, Park OO, Heeger AJ (2011) Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv Energy Mater 1(5):766-770. doi:10.1002/aenm.201100347. http://dx.doi.org/10.1002/aenm.201100347 CrossRefGoogle Scholar
  58. 58.
    Viarbitskaya S, Teulle A, Marty R, Sharma J, Girard C, Arbouet A, Dujardin E (2013) Morphology-induced redistribution of surface plasmon modes in two-dimensional crystalline gold platelets. Nat Mater 12(5):426-432. http://dx.doi.org/10.1038/nmat3581.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Till Jägeler-Hoheisel
    • 1
    Email author
  • Johannes Benduhn
    • 1
  • Christian Körner
    • 1
  • Karl Leo
    • 1
  1. 1.Institut für Angewandte PhotophysikTechnische Universität DresdenDresdenGermany

Personalised recommendations