Advertisement

Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

  • Frédéric Laquai
  • Denis Andrienko
  • Carsten DeibelEmail author
  • Dieter Neher
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

Keywords

Charge extraction Charge generation Charge recombination Organic solar cells PBT7 PBTTT PCPDTBT 

Notes

Acknowledgments

This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under the Priority Program “Elementary Processes of Organic Photovoltaics” (SPP 1355), BMBF grant MESOMERIE (FKZ 13N10723) and MEDOS (FKZ 03EK3503B), and DFG program IRTG 1404. The project has received funding from the NMP-20-2014—“Widening Materials Models” program under grant agreement number 646259 (MOSTOPHOS). F. Laquai thanks the Max Planck Society for funding the Max Planck Research Group.

References

  1. 1.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Nat Commun 5:5293CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Bakulin A, Rao A, Pavelyev V, van Loosdrecht P, Pshenichnikov M, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) Science 335:1340CrossRefGoogle Scholar
  4. 4.
    Grancini G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf H-J, Brida D, Cerullo G, Lanzani G (2013) Nat Mater 12:29CrossRefGoogle Scholar
  5. 5.
    Gagorik AG, Mohin JW, Kowalewski T, Hutchison GR (2015) Adv Funct Mater 25:1996CrossRefGoogle Scholar
  6. 6.
    Burke TM, McGehee MD (2014) Adv Mater 26:1923CrossRefGoogle Scholar
  7. 7.
    Monahan NR, Williams KW, Kumar B, Nuckolls C, Zhu X-Y (2015) Phys Rev Lett 114:247003CrossRefGoogle Scholar
  8. 8.
    Poelking C, Tietze M, Elschner C, Olthof S, Hertel D, Baumeier B, Würthner F, Meerholz K, Leo K, Andrienko D (2015) Nat Mater 14:434CrossRefGoogle Scholar
  9. 9.
    Poelking C, Andrienko D (2015) J Am Chem Soc 137:6320CrossRefGoogle Scholar
  10. 10.
    Scharber MC, Koppe M, Gao J, Cordella F, Loi MA, Denk P, Morana M, Egelhaaf H-J, Forberich K, Dennler G, Gaudiana R, Waller D, Zhu Z, Shi X, Brabec CJ (2010) Adv Mater 22:367CrossRefGoogle Scholar
  11. 11.
    Vandewal K, Ma Z, Bergqvist J, Tang Z, Wang E, Henriksson P, Tvingstedt K, Andersson MR, Zhang F, Inganäs O (2012) Adv Funct Mater 22:3480CrossRefGoogle Scholar
  12. 12.
    Bartelt JA, Lam D, Burke TM, Sweetnam SM, McGehee MD (2015) Adv Energy Mater 5:1500577Google Scholar
  13. 13.
    Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lin Lai JY, Hu H, Yu D, Yan H (2015) Energy Environ Sci 8:520CrossRefGoogle Scholar
  14. 14.
    Mikhnenko OV, Azimi H, Scharber M, Morana M, Blom PWM, Loi MA (2012) Energy Environ Sci 5:6960CrossRefGoogle Scholar
  15. 15.
    Foertig A, Kniepert J, Gluecker M, Brenner T, Dyakonov V, Neher D, Deibel C (2014) Adv Funct Mater 24:1306CrossRefGoogle Scholar
  16. 16.
    Kirchartz T, Pieters BE, Kirkpatrick J, Rau U, Nelson J (2011) Phys Rev B 83:115209CrossRefGoogle Scholar
  17. 17.
    Baranovskii SD (2014) Phys Status Solidi 251:487CrossRefGoogle Scholar
  18. 18.
    Bartesaghi D, Pérez IDC, Kniepert J, Roland S, Turbiez M, Neher D, Koster LJA (2015) Nat Commun 6:7083CrossRefGoogle Scholar
  19. 19.
    Würfel U, Neher D, Spies A, Albrecht S (2015) Nat Commun 6:6951CrossRefGoogle Scholar
  20. 20.
    Strobel T, Deibel C, Dyakonov V (2010) Phys Rev Lett 105:266602CrossRefGoogle Scholar
  21. 21.
    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V (2010) Phys Rev B 82:115306CrossRefGoogle Scholar
  22. 22.
    Tress W, Leo K, Riede M (2011) Adv Funct Mater 21:2140CrossRefGoogle Scholar
  23. 23.
    Rau U (2007) Phys Rev B 76:085303CrossRefGoogle Scholar
  24. 24.
    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2009) Nat Mater 8:904CrossRefGoogle Scholar
  25. 25.
    Burke TM, Sweetnam S, Vandewal K, McGehee MD (2015) Adv Energy Mater 5Google Scholar
  26. 26.
    Deibel C, Strobel T, Dyakonov V (2010) Adv Mater 22:4097CrossRefGoogle Scholar
  27. 27.
    Shoaee S, Subramaniyan S, Xin H, Keiderling C, Tuladhar PS, Jamieson F, Jenekhe SA, Durrant JR (2013) Adv Funct Mater 23:3286CrossRefGoogle Scholar
  28. 28.
    Dimitrov SD, Durrant JR (2014) Chem Mater 26:616CrossRefGoogle Scholar
  29. 29.
    Scharber MC, Lungenschmied C, Egelhaaf H-J, Matt G, Bednorz M, Fromherz T, Gao J, Jarzab D, Loi MA (2011) Energy Environ Sci 4:5077CrossRefGoogle Scholar
  30. 30.
    Tvingstedt K, Vandewal K, Zhang F, Inganäs O (2010) J Phys Chem C 114:21824CrossRefGoogle Scholar
  31. 31.
    Inal S, Schubert M, Sellinger A, Neher D (2010) J Phys Chem Lett 1:982CrossRefGoogle Scholar
  32. 32.
    Kern J, Schwab S, Deibel C, Dyakonov V (2011) Phys Status Solidi—Rapid Res Lett 5:364Google Scholar
  33. 33.
    Vandewal K, Albrecht S, Hoke ET, Graham KR, Widmer J, Douglas JD, Schubert M, Mateker WR, Bloking JT, Burkhard GF, Sellinger A, Fréchet JMJ, Amassian A, Riede MK, McGehee MD, Neher D, Salleo A (2014) Nat Mater 13:63CrossRefGoogle Scholar
  34. 34.
    Hodgkiss JM, Campbell AR, Marsh RA, Rao A, Albert-Seifried S, Friend RH (2010) Phys Rev Lett 104:177701CrossRefGoogle Scholar
  35. 35.
    Howard IA, Mauer R, Meister M, Laquai F (2010) J Am Chem Soc 132:14866CrossRefGoogle Scholar
  36. 36.
    Howard IA, Laquai F (2010) Macromol Chem Phys 211:2063CrossRefGoogle Scholar
  37. 37.
    Langevin PMP (1903) Ann Chim Phys 28:433Google Scholar
  38. 38.
    Pivrikas A, Sariciftci NS, Juška G, Österbacka R (2007) Prog Photovolt Res Appl 15:677CrossRefGoogle Scholar
  39. 39.
    Mingebach M, Walter S, Dyakonov V, Deibel C (2012) Appl Phys Lett 100:193302CrossRefGoogle Scholar
  40. 40.
    Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM (2005) Appl Phys Lett 86:123509CrossRefGoogle Scholar
  41. 41.
    Deibel C, Wagenpfahl A, Dyakonov V (2009) Phys Rev B 80:075203CrossRefGoogle Scholar
  42. 42.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:052104CrossRefGoogle Scholar
  43. 43.
    Heiber MC, Baumbach C, Dyakonov V, Deibel C (2015) Phys Rev Lett 114:136602CrossRefGoogle Scholar
  44. 44.
    Shuttle CG, O’Regan B, Ballantyne AM, Nelson J, Bradley DDC, de Mello J, Durrant JR (2008) Appl Phys Lett 92:093311CrossRefGoogle Scholar
  45. 45.
    Foertig A, Baumann A, Rauh D, Dyakonov V, Deibel C (2009) Appl Phys Lett 95:052104CrossRefGoogle Scholar
  46. 46.
    Gorenflot J, Heiber MC, Baumann A, Lorrmann J, Gunz M, Kämpgen A, Dyakonov V, Deibel C (2014) J Appl Phys 115:144502CrossRefGoogle Scholar
  47. 47.
    Montanari I, Nogueira AF, Nelson J, Durrant JR, Winder C, Loi MA, Sariciftci NS, Brabec C (2002) Appl Phys Lett 81:3001CrossRefGoogle Scholar
  48. 48.
    Nelson J (2003) Phys Rev B 67:155209CrossRefGoogle Scholar
  49. 49.
    Deibel C, Rauh D, Foertig A (2013) Appl Phys Lett 103:043307CrossRefGoogle Scholar
  50. 50.
    Deledalle F, Kirchartz T, Vezie MS, Campoy-Quiles M, Shakya Tuladhar P, Nelson J, Durrant JR (2015) Phys Rev X 5:011032Google Scholar
  51. 51.
    Baranovski S (2006) Charge transport in disordered solids with applications in electronics, 1 edn. Wiley, 498 p. ISBN: 978-0-470-09504-1Google Scholar
  52. 52.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Nat Photonics 6:593CrossRefGoogle Scholar
  53. 53.
    Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) Adv Mater 22, E135CrossRefGoogle Scholar
  54. 54.
    Chen W, Xu T, He F, Wang W, Wang C, Strzalka J, Liu Y, Wen J, Miller DJ, Chen J, Hong K, Yu L, Darling SB (2011) Nano Lett 11:3707CrossRefGoogle Scholar
  55. 55.
    Yan H, Collins BA, Gann E, Wang C, Ade H, McNeill CR (2012) ACS Nano 6:677CrossRefGoogle Scholar
  56. 56.
    Lou SJ, Szarko JM, Xu T, Yu L, Marks TJ, Chen LX (2011) J Am Chem Soc 133:20661CrossRefGoogle Scholar
  57. 57.
    Mort J, Chen I, Troup A, Morgan M, Knights J, Lujan R (1980) Phys Rev Lett 45:1348CrossRefGoogle Scholar
  58. 58.
    Kniepert J, Schubert M, Blakesley JC, Neher D (2011) J Phys Chem Lett 2:700CrossRefGoogle Scholar
  59. 59.
    Foster S, Deledalle F, Mitani A, Kimura T, Kim K-B, Okachi T, Kirchartz T, Oguma J, Miyake K, Durrant JR, Doi S, Nelson J (2014) Adv Energy Mater 4:1400311Google Scholar
  60. 60.
    Lange I, Kniepert J, Pingel P, Dumsch I, Allard S, Janietz S, Scherf U, Neher D (2013) J Phys Chem Lett 4:3865CrossRefGoogle Scholar
  61. 61.
    Kniepert J, Lange I, Heidbrink J, Kurpiers J, Brenner TJK, Koster LJA, Neher D (2015) J Phys Chem C 119:8310CrossRefGoogle Scholar
  62. 62.
    Hedley GJ, Ward AJ, Alekseev A, Howells CT, Martins ER, Serrano LA, Cooke G, Ruseckas A, Samuel IDW (2013) Nat Commun 4:2867CrossRefGoogle Scholar
  63. 63.
    Kniepert J, Lange I, van der Kaap NJ, Koster LJA, Neher D (2014) Adv Energy Mater 4:1301401Google Scholar
  64. 64.
    Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Nat Mater 6:497CrossRefGoogle Scholar
  65. 65.
    Peet J, Cho NS, Lee SK, Bazan GC (2008) Macromolecules 41:8655CrossRefGoogle Scholar
  66. 66.
    Jamieson FC, Agostinelli T, Azimi H, Nelson J, Durrant JR (2010) J Phys Chem Lett 1:3306CrossRefGoogle Scholar
  67. 67.
    Albrecht S, Schindler W, Kurpiers J, Kniepert J, Blakesley JC, Dumsch I, Allard S, Fostiropoulos K, Scherf U, Neher D (2012) J Phys Chem Lett 3:640CrossRefGoogle Scholar
  68. 68.
    Albrecht S, Vandewal K, Tumbleston JR, Fischer FSU, Douglas JD, Fréchet JMJ, Ludwigs S, Ade H, Salleo A, Neher D (2014) Adv Mater 26:2533CrossRefGoogle Scholar
  69. 69.
    Albrecht S, Janietz S, Schindler W, Frisch J, Kurpiers J, Kniepert J, Inal S, Pingel P, Fostiropoulos K, Koch N, Neher D (2012) J Am Chem Soc 134:14932CrossRefGoogle Scholar
  70. 70.
    Albrecht S, Tumbleston JR, Janietz S, Dumsch I, Allard S, Scherf U, Ade H, Neher D (2014) J Phys Chem Lett 5:1131CrossRefGoogle Scholar
  71. 71.
    Moet DJD, Lenes M, Morana M, Azimi H, Brabec CJ, Blom PWM (2010) Appl Phys Lett 96:213506CrossRefGoogle Scholar
  72. 72.
    Jarzab D, Cordella F, Gao J, Scharber M, Egelhaaf H-J, Loi MA (2011) Adv Energy Mater 1:604CrossRefGoogle Scholar
  73. 73.
    Hwang I-W, Cho S, Kim JY, Lee K, Coates NE, Moses D, Heeger AJ (2008) J Appl Phys 104:033706CrossRefGoogle Scholar
  74. 74.
    Rao A, Chow PCY, Gélinas S, Schlenker CW, Li C-Z, Yip H-L, Jen AK-Y, Ginger DS, Friend RH (2013) Nature 500:435CrossRefGoogle Scholar
  75. 75.
    Chow PCY, Gélinas S, Rao A, Friend RH (2014) J Am Chem Soc 136:3424CrossRefGoogle Scholar
  76. 76.
    Etzold F, Howard IA, Forler N, Cho DM, Meister M, Mangold H, Shu J, Hansen MR, Müllen K, Laquai F (2012) J Am Chem Soc 134:10569CrossRefGoogle Scholar
  77. 77.
    Etzold F, Howard IA, Forler N, Melnyk A, Andrienko D, Hansen MR, Laquai F (2015) Energy Environ Sci 8:1511CrossRefGoogle Scholar
  78. 78.
    Miller NC, Gysel R, Miller CE, Verploegen E, Beiley Z, Heeney M, McCulloch I, Bao Z, Toney MF, McGehee MD (2011) J Polym Sci Part B Polym Phys 49:499CrossRefGoogle Scholar
  79. 79.
    Miller NC, Cho E, Junk MJN, Gysel R, Risko C, Kim D, Sweetnam S, Miller CE, Richter LJ, Kline RJ, Heeney M, McCulloch I, Amassian A, Acevedo-Feliz D, Knox C, Hansen MR, Dudenko D, Chmelka BF, Toney MF, Brédas J-L, McGehee MD (2012) Adv Mater 24:6071CrossRefGoogle Scholar
  80. 80.
    Zusan A, Vandewal K, Allendorf B, Hansen NH, Pflaum J, Salleo A, Dyakonov V, Deibel C (2014) Adv Energy Mater 4:1400922Google Scholar
  81. 81.
    Veldman D, Ipek O, Meskers SCJ, Sweelssen J, Koetse MM, Veenstra SC, Kroon JM, van Bavel SS, Loos J, Janssen RAJ (2008) J Am Chem Soc 130:7721CrossRefGoogle Scholar
  82. 82.
    Deibel C, Strobel T, Dyakonov V (2009) Phys Rev Lett 103:036402CrossRefGoogle Scholar
  83. 83.
    Gehrig DW, Howard IA, Sweetnam S, Burke TM, McGehee MD, Laquai F (2015) Macromol Rapid Commun 36:1054CrossRefGoogle Scholar
  84. 84.
    Gehrig DW, Howard IA, Laquai F (2015) J Phys Chem C 119:13509CrossRefGoogle Scholar
  85. 85.
    Zusan A, Gieseking B, Zerson M, Dyakonov V, Magerle R, Deibel C (2015) Sci Rep 5:8286CrossRefGoogle Scholar
  86. 86.
    Collins BA, Li Z, Tumbleston JR, Gann E, McNeill CR, Ade H (2013) Adv Energy Mater 3:65CrossRefGoogle Scholar
  87. 87.
    Fischer FSU, Trefz D, Back J, Kayunkid N, Tornow B, Albrecht S, Yager KG, Singh G, Karim A, Neher D, Brinkmann M, Ludwigs S (2015) Adv Mater 27:1223CrossRefGoogle Scholar
  88. 88.
    Fischer FSU, Kayunkid N, Trefz D, Ludwigs S, Brinkmann M (2015) Macromolecules 48:3974CrossRefGoogle Scholar
  89. 89.
    Scharsich C, Fischer FSU, Wilma K, Hildner R, Ludwigs S, Köhler A (2015) J Polym Sci Part B Polym Phys 53:1416CrossRefGoogle Scholar
  90. 90.
    Poelking C, Daoulas K, Troisi A, Andrienko D (2014) P3HT revisited – from molecular scale to solar cell devices Adv Polym Sci 265:139–180Google Scholar
  91. 91.
    Poelking C, Andrienko D (2013) Macromolecules 46:8941CrossRefGoogle Scholar
  92. 92.
    Gemünden P, Poelking C, Kremer K, Daoulas K, Andrienko D (2015) Macromol Rapid Commun 36:1047CrossRefGoogle Scholar
  93. 93.
    Andrienko D (2014) Supramolecular materials for opto-electronics. Royal Society of Chemistry, CambridgeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Frédéric Laquai
    • 1
  • Denis Andrienko
    • 2
  • Carsten Deibel
    • 3
    Email author
  • Dieter Neher
    • 4
  1. 1.King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  2. 2.Max Planck Institute for Polymer ResearchMainzGermany
  3. 3.Institut für Physik, Technische Universität ChemnitzChemnitzGermany
  4. 4.Institute of Physics and Astronomy, University of PotsdamPotsdamGermany

Personalised recommendations