Skip to main content

Tuning Side Chain and Main Chain Order in a Prototypical Donor–Acceptor Copolymer: Implications for Optical, Electronic, and Photovoltaic Characteristics

  • Chapter
  • First Online:
Elementary Processes in Organic Photovoltaics

Part of the book series: Advances in Polymer Science ((POLYMER,volume 272))

  • 2665 Accesses

Abstract

The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Z-G, Wang J (2012) J Mater Chem 22:4178

    Article  CAS  Google Scholar 

  2. Kang I, Yun H-J, Chung DS, Kwon S-K, Kim Y-H (2013) J Am Chem Soc 135:14896

    Article  CAS  Google Scholar 

  3. Tseng H-R, Phan H, Luo C, Wang M, Perez LA, Patel SN, Ying L, Kramer EJ, Nguyen T-Q, Bazan GC, Heeger AJ (2014) Adv Mater 26:2993

    Article  CAS  Google Scholar 

  4. Yi Z, Wang S, Liu Y (2015) Adv Mater 27:3589

    Article  CAS  Google Scholar 

  5. Guo X, Facchetti A, Marks TJ (2014) Chem Rev 114:8943

    Article  CAS  Google Scholar 

  6. Lin Y, Zhan X (2014) Mater Horiz 1:470

    Article  CAS  Google Scholar 

  7. Steyrleuthner R, Schubert M, Jaiser F, Blakesley JC, Chen Z, Facchetti A, Neher D (2010) Adv Mater 22:2799

    Article  CAS  Google Scholar 

  8. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) Nature 457:679

    Article  CAS  Google Scholar 

  9. Kang H, Uddin MA, Lee C, Kim K-H, Nguyen TL, Lee W, Li Y, Wang C, Woo HY, Kim BJ (2015) J Am Chem Soc 137:2359

    Article  CAS  Google Scholar 

  10. Mori D, Benten H, Okada I, Ohkita H, Ito S (2014) Energy Environ Sci 7:2939

    Article  CAS  Google Scholar 

  11. Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J (2015) Adv Mater. doi:10.1002/adma.201503218

    Google Scholar 

  12. Li W, Roelofs WSC, Turbiez M, Wienk MM, Janssen RAJ (2014) Adv Mater 26:3304

    Article  CAS  Google Scholar 

  13. Steyrleuthner R, Di Pietro R, Collins BA, Polzer F, Himmelberger S, Schubert M, Chen Z, Zhang S, Salleo A, Ade H, Facchetti A, Neher D (2014) J Am Chem Soc 136:4245

    Article  CAS  Google Scholar 

  14. Marsh RA, Groves C, Greenham NC (2007) J Appl Phys 101:083509

    Article  Google Scholar 

  15. Offermans T, Meskers SCJ, Janssen RAJ (2005) Chem Phys 308:125

    Article  CAS  Google Scholar 

  16. Yang F, Forrest SR (2008) ACS Nano 2:1022

    Article  CAS  Google Scholar 

  17. Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) Adv Mater 15:988

    Article  CAS  Google Scholar 

  18. Groves C, Marsh RA, Greenham NC (2008) J Chem Phys 129:114903

    Article  CAS  Google Scholar 

  19. Huang Y, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss JM, Deleener C, Friend RH, Beljonne D (2008) Nat Mater 7:483

    Article  CAS  Google Scholar 

  20. Liu J, Choi H, Kim JY, Bailey C, Durstock M, Dai L (2012) Adv Mater 24:538

    Article  CAS  Google Scholar 

  21. McNeill CR, Abrusci A, Zaumseil J, Wilson R, McKiernan MJ, Burroughes JH, Halls JJM, Greenham NC, Friend RH (2007) Appl Phys Lett 90:193506

    Article  Google Scholar 

  22. McNeill CR, Halls JJM, Wilson R, Whiting GL, Berkebile S, Ramsey MG, Friend RH, Greenham NC (2008) Adv Funct Mater 18:2309

    Article  CAS  Google Scholar 

  23. McNeill CR, Westenhoff S, Groves C, Friend RH, Greenham NC (2007) J Phys Chem C 111:19153

    Article  CAS  Google Scholar 

  24. Mori D, Benten H, Ohkita H, Ito S (2015) Adv Energy Mater 5:1500304

    Article  Google Scholar 

  25. Mori D, Benten H, Ohkita H, Ito S, Miyake K (2012) ACS Appl Mater Interfaces 4:3325

    Article  CAS  Google Scholar 

  26. Yan H, Collins BA, Gann E, Wang C, Ade H, McNeill CR (2012) ACS Nano 6:677

    Article  CAS  Google Scholar 

  27. Kodomari M, Satoh H, Yoshitomi S (1988) J Org Chem 53:2093

    Article  CAS  Google Scholar 

  28. Baillargeon VP, Stille JK (1986) J Am Chem Soc 108:452

    Article  CAS  Google Scholar 

  29. Li J-H, Liang Y, Wang D-P, Liu W-J, Xie Y-X, Yin D-L (2005) J Org Chem 70:2832

    Article  CAS  Google Scholar 

  30. Ellinger S, Ziener U, Thewalt U, Landfester K, Möller M (2007) Chem Mater 19:1070

    Article  CAS  Google Scholar 

  31. Letizia JA, Salata MR, Tribout CM, Facchetti A, Ratner MA, Marks TJ (2008) J Am Chem Soc 130:9679

    Article  CAS  Google Scholar 

  32. Mulherin RC, Jung S, Huettner S, Johnson K, Kohn P, Sommer M, Allard S, Scherf U, Greenham NC (2011) Nano Lett 11:4846

    Article  CAS  Google Scholar 

  33. Nothofer H-G (2005) Dissertation, Universität Potsdam

    Google Scholar 

  34. Yamamoto T (1992) Prog Polym Sci 17:1153

    Article  CAS  Google Scholar 

  35. Hwang J, Kim E-G, Liu J, Brédas J-L, Duggal A, Kahn A (2007) J Phys Chem C 111:1378

    Article  CAS  Google Scholar 

  36. Koch N, Elschner A, Rabe JP, Johnson RL (2005) Adv Mater 17:330

    Article  CAS  Google Scholar 

  37. Lange I, Blakesley JC, Frisch J, Vollmer A, Koch N, Neher D (2011) Phys Rev Lett 106:216402

    Article  Google Scholar 

  38. Sueyoshi T, Fukagawa H, Ono M, Kera S, Ueno N (2009) Appl Phys Lett 95:183303

    Article  Google Scholar 

  39. Garreau S, Leclerc M, Errien N, Louarn G (2003) Macromolecules 36:692

    Article  CAS  Google Scholar 

  40. Steyrleuthner R, Schubert M, Howard I, Klaumünzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D (2012) J Am Chem Soc 134:18303

    Article  CAS  Google Scholar 

  41. Schubert M, Dolfen D, Frisch J, Roland S, Steyrleuthner R, Stiller B, Chen Z, Scherf U, Koch N, Facchetti A, Neher D (2012) Adv Energy Mater 2:369

    Article  CAS  Google Scholar 

  42. Chua L-L, Zaumseil J, Chang J-F, Ou EC-W, Ho PK-H, Sirringhaus H, Friend RH (2005) Nature 434:194

    Article  CAS  Google Scholar 

  43. Bange S, Schubert M, Neher D (2010) Phys Rev B 81:035209

    Article  Google Scholar 

  44. Schubert M, Preis E, Blakesley JC, Pingel P, Scherf U, Neher D (2013) Phys Rev B 87:024203

    Article  Google Scholar 

  45. Orenstein J, Kastner M (1981) Phys Rev Lett 46:1421

    Article  CAS  Google Scholar 

  46. Nicolai HT, Kuik M, Wetzelaer GAH, de Boer B, Campbell C, Risko C, Brédas JL, Blom PWM (2012) Nat Mater 11:882

    Article  CAS  Google Scholar 

  47. Kilina S, Dandu N, Batista ER, Saxena A, Martin RL, Smith DL, Tretiak S (2013) J Phys Chem Lett 4:1453

    Article  CAS  Google Scholar 

  48. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) Nat Mater 12:1038

    Article  CAS  Google Scholar 

  49. Huang DM, Mauger SA, Friedrich S, George SJ, Dumitriu-LaGrange D, Yoon S, Moulé AJ (2011) Adv Funct Mater 21:1657

    Article  CAS  Google Scholar 

  50. Chang J-F, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H (2004) Chem Mater 16:4772

    Article  CAS  Google Scholar 

  51. Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rabe JP, Scherf U, Neher D (2004) Adv Funct Mater 14:757

    Article  CAS  Google Scholar 

  52. Hao XT, Hosokai T, Mitsuo N, Kera S, Okudaira KK, Mase K, Ueno N (2007) J Phys Chem B 111:10365

    Article  CAS  Google Scholar 

  53. Heimel G, Salzmann I, Duhm S, Rabe JP, Koch N (2009) Adv Funct Mater 19:3874

    Article  CAS  Google Scholar 

  54. Frisch J, Vollmer A, Rabe JP, Koch N (2011) Org Electron 12:916

    Article  CAS  Google Scholar 

  55. Braun S, Salaneck WR, Fahlman M (2009) Adv Mater 21:1450

    Article  CAS  Google Scholar 

  56. Hwang J, Wan A, Kahn A (2009) Mater Sci Eng R Rep 64:1

    Article  Google Scholar 

  57. Kanai K, Miyazaki T, Suzuki H, Inaba M, Ouchi Y, Seki K (2010) Phys Chem Chem Phys 12:273

    Article  CAS  Google Scholar 

  58. Dennler G, Scharber MC, Brabec CJ (2009) Adv Mater 21:1323

    Article  CAS  Google Scholar 

  59. Rand BP, Burk DP, Forrest SR (2007) Phys Rev B 75:115327

    Article  Google Scholar 

  60. Burke TM, Sweetnam S, Vandewal K, McGehee MD (2015) Adv Energy Mater 5:1500123

    Article  Google Scholar 

  61. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2010) Phys Rev B 81:125204

    Article  Google Scholar 

  62. Kuriyama T, Kunimori K, Kuriyama T, Nozoye H (1998) Chem Commun 501. doi:10.1039/A707932J

  63. Frisch J, Schubert M, Preis E, Rabe JP, Neher D, Scherf U, Koch N (2012) J Mater Chem 22:4418

    Article  CAS  Google Scholar 

  64. Würfel U, Neher D, Spies A, Albrecht S (2015) Nat Commun 6:6951

    Article  Google Scholar 

  65. Schubert M, Collins BA, Mangold H, Howard IA, Schindler W, Vandewal K, Roland S, Behrends J, Kraffert F, Steyrleuthner R, Chen Z, Fostiropoulos K, Bittl R, Salleo A, Facchetti A, Laquai F, Ade HW, Neher D (2014) Adv Funct Mater 24:4068

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the DFG for funding within the DFG Priority Program 1355 “Elementary Processes of Organic Photovoltaics.” This report is based on results obtained by the collaboration of project no. 15 (“Tuning the Optical and Charge-Transporting Properties of the Electron-Accepting Phase in Polymer Solar Cells”) and project number 11 (“Electronic Properties of Interfaces with Conjugated Polymers and Polyelectrolytes”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schubert, M. et al. (2017). Tuning Side Chain and Main Chain Order in a Prototypical Donor–Acceptor Copolymer: Implications for Optical, Electronic, and Photovoltaic Characteristics. In: Leo, K. (eds) Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-28338-8_10

Download citation

Publish with us

Policies and ethics