Skip to main content

In situ Studies of Morphology Formation in Solution-Processed Polymer–Fullerene Blends

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 272))

Abstract

Control of the blend nanomorphology in bulk heterojunctions (BHJs) is still a challenge that demands more fundamental knowledge of the mechanism of phase separation and crystallization during solvent drying. In this review we show that in situ studies using combined laser reflectometry and grazing-incidence wide-angle X-ray scattering provide a fundamental understanding on how the nanomorphology develops dynamically during film drying. We identify influencing parameters for controlled film formation in order to obtain optimized solar cell performance. We review here our results on BHJs of poly(3-hexylthiophene)–[6,6]-phenyl-C61-butyric acid methyl ester and poly{[4,40-bis(2-ethylhexyl)dithieno(3,2-b;20,30-d)silole]-2,6-diyl-alt-(2,1,3 benzothidiazole)-4,7-diyl} with [6,6]-phenyl-C71-butyric acid methyl ester.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liao H-C et al (2013) Additives for morphology control in high-efficiency organic solar cells. Mater Today 16(9):326–336

    Article  CAS  Google Scholar 

  2. Liu F et al (2013) Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog Polym Sci 38(12):1990–2052

    Article  CAS  Google Scholar 

  3. Treat ND, Chabinyc ML (2014) Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics. Annu Rev Phys Chem 65:59–81

    Article  CAS  Google Scholar 

  4. Clarke TM et al (2008) Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater 18(24):4029–4035

    Article  CAS  Google Scholar 

  5. Chen F-C et al (2010) Morphological study of P3HT:PCBM blend films prepared through solvent annealing for solar cell applications. Sol Energy Mater Sol Cells 94(12):2426–2430

    Article  CAS  Google Scholar 

  6. Liu X et al (2012) Solvent additive control of morphology and crystallization in semiconducting polymer blends. Adv Mater 24(5):669–674

    Article  CAS  Google Scholar 

  7. Schmidt-Hansberg B et al (2011) Moving through the phase diagram: morphology formation in solution cast polymer-fullerene-blend films for organic solar cells. ACS Nano 5(11):8579–8590

    Article  Google Scholar 

  8. Schmidt-Hansberg B et al (2009) In situ monitoring the drying kinetics of knife coated polymer-fullerene films for organic solar cells. J Appl Phys 106(12):124501

    Article  Google Scholar 

  9. Sanyal M et al (2011) In situ X-ray study of drying-temperature influence on the structural evolution of bulk-heterojunction polymer-fullerene solar cells processed by doctor-blading. Adv Energy Mater 1(3):363–367

    Article  CAS  Google Scholar 

  10. Sanyal M et al (2011) Effect of photovoltaic polymer/fullerene blend composition ratio on microstructure evolution during film solidification investigated in real time by X-ray diffraction. Macromolecules 44(10):3795–3800

    Article  CAS  Google Scholar 

  11. Schmidt-Hansberg B et al (2012) Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymer–fullerene solar cells. Sol Energy Mater Sol Cells 96:195–201

    Article  CAS  Google Scholar 

  12. Schmidt-Hansberg B et al (2011) Spatially resolved drying kinetics of multi-component solution cast films for organic electronics. Chem Eng Process Process Intensif 50(5–6):509–515

    Article  CAS  Google Scholar 

  13. Bergqvist J et al (2013) In situ reflectance imaging of organic thin film formation from solution deposition. Sol Energy Mater Sol Cells 114:89–98

    Article  CAS  Google Scholar 

  14. Heriot SY, Jones RA (2005) An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nat Mater 4(10):782–786

    Article  CAS  Google Scholar 

  15. Schmidt-Hansberg B (2012) Process-structure-property relationship of polymer-fullerene bulk heterojunction films for organic solar cells: drying process, film structure and optoelectronic properties. Cuvillier, Göttingen

    Google Scholar 

  16. Wang T et al (2010) The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6(17):4128–4134

    Article  CAS  Google Scholar 

  17. Vogt BD et al (2005) Moisture absorption into ultrathin hydrophilic polymer films on different substrate surfaces. Polymer 46(5):1635–1642

    Article  CAS  Google Scholar 

  18. Eastman SA et al (2012) Effect of confinement on structure, water solubility, and water transport in Nafion thin films. Macromolecules 45(19):7920–7930

    Article  CAS  Google Scholar 

  19. Baker JL et al (2010) Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. Langmuir 26(11):9146–9151

    Article  CAS  Google Scholar 

  20. Muller-Buschbaum P (2014) The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater 26(46):7692–7709

    Article  Google Scholar 

  21. Rivnay J et al (2012) Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112(10):5488–5519

    Article  CAS  Google Scholar 

  22. van Krevelen DW (1990) Properties of polymers: their correlation with chemical structure: their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Google Scholar 

  23. Yang X et al (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16(9–10):802–806

    Article  CAS  Google Scholar 

  24. Yao Y et al (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18(12):1783–1789

    Article  CAS  Google Scholar 

  25. Westacott P et al (2013) On the role of intermixed phases in organic photovoltaic blends. Energy Environ Sci 6(9):2756

    Article  CAS  Google Scholar 

  26. Collins BA, Tumbleston JR, Ade H (2011) Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J Phys Chem Lett 2(24):3135–3145

    Article  CAS  Google Scholar 

  27. DeLongchamp DM et al (2011) Molecular characterization of organic electronic films. Adv Mater 23(3):319–337

    Article  CAS  Google Scholar 

  28. Richter LJ et al (2015) In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv Energy Mater 5(3):1400975

    Article  Google Scholar 

  29. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    Article  CAS  Google Scholar 

  30. Ma W et al (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622

    Article  CAS  Google Scholar 

  31. Li G et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  CAS  Google Scholar 

  32. Mihailetchi VD et al (2006) Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl Phys Lett 89(1):012107

    Article  Google Scholar 

  33. Li G et al (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17(10):1636–1644

    Article  Google Scholar 

  34. Shin M et al (2010) Abrupt morphology change upon thermal annealing in poly(3-hexylthiophene)/soluble fullerene blend films for polymer solar cells. Adv Funct Mater 20(5):748–754

    Article  CAS  Google Scholar 

  35. Campoy-Quiles M et al (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat Mater 7(2):158–164

    Article  CAS  Google Scholar 

  36. Schmidt-Hansberg B et al (2012) Structure formation in low-bandgap polymer:fullerene solar cell blends in the course of solvent evaporation. Macromolecules 45(19):7948–7955

    Article  CAS  Google Scholar 

  37. Brinkmann M et al. (2014) Understanding the structure and crystallization of regioregular poly (3-hexylthiophene) from the perspective of epitaxy, vol 265. Springer, Heidelberg, pp 83–106

    Google Scholar 

  38. Chu C-W et al (2008) Control of the nanoscale crystallinity and phase separation in polymer solar cells. Appl Phys Lett 92(10):103306

    Article  Google Scholar 

  39. Moulé AJ, Meerholz K (2008) Controlling morphology in polymer–fullerene mixtures. Adv Mater 20(2):240–245

    Article  Google Scholar 

  40. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3579–3602

    Article  Google Scholar 

  41. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91(11):954–985

    Article  CAS  Google Scholar 

  42. Scharber MC et al (2010) Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell. Adv Mater 22(3):367–370

    Article  CAS  Google Scholar 

  43. Maurano A et al (2010) Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv Mater 22(44):4987–4992

    Article  CAS  Google Scholar 

  44. Hou J et al (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130(48):16144–16145

    Article  CAS  Google Scholar 

  45. Chen HY et al (2010) Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv Mater 22(3):371–375

    Article  CAS  Google Scholar 

  46. Morana M et al (2010) Nanomorphology and charge generation in bulk heterojunctions based on low-bandgap dithiophene polymers with different bridging atoms. Adv Funct Mater 20(7):1180–1188

    Article  CAS  Google Scholar 

  47. Colsmann A et al (2011) Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties. Adv Energy Mater 1(4):599–603

    Article  CAS  Google Scholar 

  48. Chou C-H et al (2011) A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv Mater 23(10):1282–1286

    Article  CAS  Google Scholar 

  49. Sista S et al (2010) Highly efficient tandem polymer photovoltaic cells. Adv Mater 22(3):380–383

    Article  CAS  Google Scholar 

  50. Ameri T et al (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266

    Article  CAS  Google Scholar 

  51. Koppe M et al (2010) Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv Funct Mater 20(2):338–346

    Article  CAS  Google Scholar 

  52. Ameri T et al (2012) Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv Energy Mater 2(10):1198–1202

    Article  CAS  Google Scholar 

  53. Pearson AJ et al (2014) Morphology development in amorphous polymer:fullerene photovoltaic blend films during solution casting. Adv Funct Mater 24(5):659–667

    Article  CAS  Google Scholar 

  54. Agostinelli T et al (2011) The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:fullerene solar cells. J Polym Sci B 49(10):717–724

    Article  CAS  Google Scholar 

  55. Rogers JT et al (2011) Structural order in bulk heterojunction films prepared with solvent additives. Adv Mater 23(20):2284–2288

    Article  CAS  Google Scholar 

  56. Rogers JT et al (2012) Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J Am Chem Soc 134(6):2884–2887

    Article  CAS  Google Scholar 

  57. Pearson AJ, Wang T, Lidzey DG (2013) The role of dynamic measurements in correlating structure with optoelectronic properties in polymer:fullerene bulk-heterojunction solar cells. Rep Prog Phys 76(2):022501

    Article  Google Scholar 

  58. Engmann S et al (2015) Real-time X-ray scattering studies of film evolution in high performing small-molecule-fullerene organic solar cells. J Mater Chem A 3(16):8764–8771

    Article  CAS  Google Scholar 

  59. Chou KW et al (2013) Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv Mater 25(13):1923–1929

    Article  CAS  Google Scholar 

  60. Schmidt K et al (2014) A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells. Adv Mater 26(2):300–305

    Article  CAS  Google Scholar 

  61. Smilgies D-M et al (2013) Look fast: crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering. Phys Status Solidi RRL 7(3):177–179

    Article  CAS  Google Scholar 

  62. Wei Chou K et al (2014) Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors. J Mater Chem C 2(28):5681–5689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Barrena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barrena, E. et al. (2017). In situ Studies of Morphology Formation in Solution-Processed Polymer–Fullerene Blends. In: Leo, K. (eds) Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-28338-8_1

Download citation

Publish with us

Policies and ethics