Skip to main content

Two-Dimensional Electron Gas at Oxide Interfaces

  • Chapter
  • First Online:
Oxide Materials at the Two-Dimensional Limit

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 234))

  • 1890 Accesses

Abstract

In this chapter, we provide an overview of the growing field of the two-dimensional electron gas in oxide heterostructures. The discovery of the high mobility electron gas at the oxide-oxide interface has spurred subsequent investigations which draw from the large body of work on polar oxide surfaces and thin films. We discuss the three main mechanisms of electronic reconstruction, oxygen vacancy formation, and cation exchange in order to address the question, “How can the interface between two insulators be conducting?” Throughout the chapter, in addition to the model LaAlO3/SrTiO3 system, we provide the reader with a sampling of what has been learned from other oxide heterostructures through both experiment and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amoruso S, Aruta C, Aurino P (2012) Oxygen background gas influence on pulsed laser deposition process of LaAlO3 and LaGaO3. Appl Surf Sci 258:9116–9122. doi:10.1016/j.apsusc.2011.09.078

    Article  Google Scholar 

  2. Anderson P, Blount E (1965) Symmetry considerations on martensitic transformations: “Ferroelectric” metals 14:217–219

    Google Scholar 

  3. Arras R, Ruiz VG, Pickett WE, Pentcheva R (2012) Tuning the two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by metallic contacts. Phys Rev B 85:125404. doi:10.1103/PhysRevB.85.125404

    Article  Google Scholar 

  4. Bark CW, Felker DA, Wang Y (2011) Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain. Proc Natl Acad Sci 108:4720–4724. doi:10.1073/pnas.1014849108

    Article  Google Scholar 

  5. Basletic M, Maurice JL, Carrétéro C (2008) Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat Mater 7:621–625. doi:10.1038/nmat2223

    Article  Google Scholar 

  6. Biscaras J, Bergeal N, Hurand S (2012) Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping. Phys Rev Lett 108:247004. doi:10.1103/PhysRevLett.108.247004

    Article  Google Scholar 

  7. Biscaras J, Bergeal N, Kushwaha A (2010) Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat Commun 1:89. doi:10.1038/ncomms1084

    Article  Google Scholar 

  8. Boucherit M, Shoron O, Jackson CA (2014) Modulation of over 1014 cm−2 electrons in SrTiO3/GdTiO3 heterostructures. Appl Phys Lett 104:182904. doi:10.1063/1.4875796

    Article  Google Scholar 

  9. Boucherit M, Shoron OF, Cain TA (2013) Extreme charge density SrTiO3/GdTiO3 heterostructure field effect transistors. Appl Phys Lett 102:242909. doi:10.1063/1.4811273

    Article  Google Scholar 

  10. Brinkman A, Huijben M, van Zalk M (2007) Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6:493–496. doi:10.1038/nmat1931

    Article  Google Scholar 

  11. Caviglia AD, Gabay M, Gariglio S (2010) Tunable Rashba spin-orbit interaction at oxide interfaces. Phys Rev Lett 104:126803. doi:10.1103/PhysRevLett.104.126803

    Article  Google Scholar 

  12. Caviglia AD, Gariglio S, Reyren N (2008) Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456:624–627. doi:10.1038/nature07576

    Article  Google Scholar 

  13. Cen C, Thiel S, Hammerl G (2008) Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat Mater 7:298–302. doi:10.1038/nmat2136

    Article  Google Scholar 

  14. Cen C, Thiel S, Mannhart J, Levy J (2009) Oxide nanoelectronics on demand. Science 323:1026–1030. doi:10.1126/science.1168294

    Article  Google Scholar 

  15. Chakhalian J, Freeland JW, Habermeier H-U (2007) Orbital reconstruction and covalent bonding at an oxide interface. Science 318:1114–1117. doi:10.1126/science.1149338

    Article  Google Scholar 

  16. Chambers SA (2011) Understanding the mechanism of conductivity at the LaAlO3/SrTiO3 (001) interface. Surf Sci 605:1133–1140. doi:10.1016/j.susc.2011.04.011

    Article  Google Scholar 

  17. Chambers SA, Engelhard MH, Shutthanandan V (2010) Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3 (001) heterojunction. Surf Sci Rep 65:317–352. doi:10.1016/j.surfrep.2010.09.001

    Article  Google Scholar 

  18. Chang YJ, Moreschini L, Bostwick A (2013) Layer-by-layer evolution of a two-dimensional electron gas near an oxide interface. Phys Rev Lett 111:126401. doi:10.1103/PhysRevLett.111.126401

    Article  Google Scholar 

  19. Chen Y, Pryds N, Kleibeuker JE (2011) Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett 11:3774–3778. doi:10.1021/nl201821j

    Article  Google Scholar 

  20. Chen YZ, Bovet N, Kasama T (2014) Room temperature formation of high-mobility two-dimensional electron gases at crystalline complex oxide interfaces. Adv Mater 26:1462–1467. doi:10.1002/adma.201304634

    Article  Google Scholar 

  21. Chen YZ, Bovet N, Trier F (2013) A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat Commun 4:1371. doi:10.1038/ncomms2394

    Article  Google Scholar 

  22. Colby R, Qiao L, Zhang KHL (2013) Cation intermixing and electronic deviations at the insulating LaCrO3/SrTiO3 (001) interface. Phys Rev B 88:155325. doi:10.1103/PhysRevB.88.155325

    Article  Google Scholar 

  23. Delahaye J, Grenet T (2012) Metallicity of the SrTiO3 surface induced by room temperature evaporation of alumina. J Phys D: Appl Phys 45:315301. doi:10.1088/0022-3727/45/31/315301

    Article  Google Scholar 

  24. Eckstein JN (2007) Oxide interfaces: Watch out for the lack of oxygen. Nat Mater 6:473–474. doi:10.1038/nmat1944

    Article  Google Scholar 

  25. Ferrari V, Weissmann M (2014) Tuning the insulator-metal transition in oxide interfaces: An ab initio study exploring the role of oxygen vacancies and cation interdiffusion. Phys status solidi 251:1601–1607. doi:10.1002/pssb.201451050

    Article  Google Scholar 

  26. Fix T, MacManus-Driscoll JL, Blamire MG (2009) Delta-doped LaAlO3/SrTiO3 interfaces. Appl Phys Lett 94:172101. doi:10.1063/1.3126445

    Article  Google Scholar 

  27. Fredrickson KD, Demkov AA (2015) Switchable conductivity at the ferroelectric interface: Nonpolar oxides. Phys Rev B 91:115126. doi:10.1103/PhysRevB.91.115126

    Article  Google Scholar 

  28. Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Reports Prog Phys 71:016501. doi:10.1088/0034-4885/71/1/016501

    Article  Google Scholar 

  29. Goniakowski J, Noguera C (2014) Conditions for electronic reconstruction at stoichiometric polar/polar interfaces. J Phys: Condens Matter 26:485010. doi:10.1088/0953-8984/26/48/485010

    Google Scholar 

  30. Gureev MY, Tagantsev AK, Setter N (2011) Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys Rev B 83:184104. doi:10.1103/PhysRevB.83.184104

    Article  Google Scholar 

  31. Hamann DR, Muller DA, Hwang HY (2006) Lattice-polarization effects on electron-gas charge densities in ionic superlattices. Phys Rev B 73:195403. doi:10.1103/PhysRevB.73.195403

    Article  Google Scholar 

  32. Harrison W, Kraut E, Waldrop J, Grant R (1978) Polar heterojunction interfaces. Phys Rev B 18:4402–4410. doi:10.1103/PhysRevB.18.4402

    Article  Google Scholar 

  33. He J, Stephenson GB, Nakhmanson SM (2012) Electronic surface compensation of polarization in PbTiO3 films. J Appl Phys 112:054112. doi:10.1063/1.4750041

    Article  Google Scholar 

  34. Herranz G, Sánchez F, Dix N (2012) High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces. Sci Rep 2:758. doi:10.1038/srep00758

    Article  Google Scholar 

  35. Hoffman J, Pan X, Reiner JW (2010) Ferroelectric field effect transistors for memory applications. Adv Mater 22:2957–2961. doi:10.1002/adma.200904327

    Article  Google Scholar 

  36. Hotta Y, Susaki T, Hwang H (2007) Polar discontinuity doping of the LaVO3/SrTiO3 interface. Phys Rev Lett 99:3–6. doi:10.1103/PhysRevLett.99.236805

    Article  Google Scholar 

  37. Huijben M, Rijnders G, Blank DHA (2006) Electronically coupled complementary interfaces between perovskite band insulators. Nat Mater 5:556–560. doi:10.1038/nmat1675

    Article  Google Scholar 

  38. Hwang HY (2006) Tuning interface states. Science 313:1895–1896. doi:10.1126/science.1133138

    Article  Google Scholar 

  39. Hwang HY (2006) Applied physics: Tuning interface states. Science 313:1895–1896. doi:10.1126/science.1133138

    Article  Google Scholar 

  40. Hwang HY, Iwasa Y, Kawasaki M (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113. doi:10.1038/nmat3223

    Article  Google Scholar 

  41. Jang HW, Baek SH, Ortiz D (2008) Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. Appl Phys Lett 92:062910. doi:10.1063/1.2842418

    Article  Google Scholar 

  42. Jang HW, Felker DA, Bark CW (2011) Metallic and insulating oxide interfaces controlled by electronic correlations. Science 331:886–889. doi:10.1126/science.1198781

    Article  Google Scholar 

  43. Janotti A, Bjaalie L, Gordon L, Van de Walle CG (2012) Controlling the density of the two-dimensional electron gas at the SrTiO3/LaAlO3 interface. Phys Rev B 86:241108. doi:10.1103/PhysRevB.86.241108

    Article  Google Scholar 

  44. Kalabukhov A, Gunnarsson R, Börjesson J (2007) Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3∕SrTiO3 interface. Phys Rev B 75:121404. doi:10.1103/PhysRevB.75.121404

    Article  Google Scholar 

  45. Khalsa G, Lee B, MacDonald AH (2013) Theory of t2g electron-gas Rashba interactions. Phys Rev B 88:041302. doi:10.1103/PhysRevB.88.041302

    Article  Google Scholar 

  46. Khalsa G, MacDonald AH (2012) Theory of the SrTiO3 surface state two-dimensional electron gas. Phys Rev B 86:125121. doi:10.1103/PhysRevB.86.125121

    Article  Google Scholar 

  47. Kolodiazhnyi T, Tachibana M, Kawaji H (2010) Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition. Phys Rev Lett 104:147602. doi:10.1103/PhysRevLett.104.147602

    Article  Google Scholar 

  48. Kormondy KJ, Posadas AB, Ngo TQ (2015) Quasi-two-dimensional electron gas at the epitaxial alumina/SrTiO3 interface: Control of oxygen vacancies. J Appl Phys 117:095303. doi:10.1063/1.4913860

    Article  Google Scholar 

  49. Kozuka Y, Tsukazaki A, Kawasaki M (2014) Challenges and opportunities of ZnO-related single crystalline heterostructures. Appl Phys Rev 1:011303. doi:10.1063/1.4853535

    Article  Google Scholar 

  50. Lee J, Demkov AA (2008) Charge origin and localization at the n-type SrTiO3/LaAlO3 interface. Phys Rev B 78:193104. doi:10.1103/PhysRevB.78.193104

    Article  Google Scholar 

  51. Lee J, Lin C, Demkov AA (2013a) Metal-induced charge transfer, structural distortion, and orbital order in SrTiO3 thin films. Phys Rev B 87:165103. doi:10.1103/PhysRevB.87.165103

    Article  Google Scholar 

  52. Lee J, Sai N, Cai T (2010a) Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B 81:144425. doi:10.1103/PhysRevB.81.144425

    Article  Google Scholar 

  53. Lee J, Sai N, Demkov AA (2010b) Spin-polarized two-dimensional electron gas through electrostatic doping in LaAlO3/EuO heterostructures. Phys Rev B 82:235305. doi:10.1103/PhysRevB.82.235305

    Article  Google Scholar 

  54. Lee SW, Heo J, Gordon RG (2013b) Origin of the self-limited electron densities at Al2O3/SrTiO3 heterostructures grown by atomic layer deposition—oxygen diffusion model. Nanoscale 5:8940–8944. doi:10.1039/c3nr03082b

    Article  Google Scholar 

  55. Lee SW, Liu Y, Heo J, Gordon RG (2012) Creation and control of two-dimensional electron gas using Al-based amorphous oxides/SrTiO3 heterostructures grown by atomic layer deposition. Nano Lett 12:4775–4783. doi:10.1021/nl302214x

    Article  Google Scholar 

  56. Liu ZQ, Li CJ, Lü WM (2013) Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: The role of oxygen vacancies and electronic reconstruction. Phys Rev X 3:021010. doi:10.1103/PhysRevX.3.021010

    Google Scholar 

  57. Maekawa S, Tohyama T, Barnes SE (2004) Physics of transition metal oxides. Springer, Berlin

    Book  Google Scholar 

  58. Manchon A, Zhang S (2008) Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys Rev B 78:212405. doi:10.1103/PhysRevB.78.212405

    Article  Google Scholar 

  59. Marshall MSJ, Malashevich A, Disa AS (2014) Conduction at a ferroelectric interface. Phys Rev Appl 2:051001. doi:10.1103/PhysRevApplied.2.051001

    Article  Google Scholar 

  60. Medvedev VA, Wagman DD, Cox JD (1989) CODATA key values for thermodynamics. Hemisphere Publishing Corporation, New York

    Google Scholar 

  61. Mundy J, Fitting Kourkoutis L, Warusawithana M (2011) Probing stoichiometry in LaAlO3/SrTiO3 interfaces by aberration-corrected STEM. Microsc Microanal 17:1450–1451

    Article  Google Scholar 

  62. Nazir S, Behtash M, Yang K (2014) Enhancing interfacial conductivity and spatial charge confinement of LaAlO3/SrTiO3 heterostructures via strain engineering. Appl Phys Lett 105:141602. doi:10.1063/1.4897626

    Article  Google Scholar 

  63. Nazir S, Behtash M, Yang K (2015) Towards enhancing two-dimensional electron gas quantum confinement effects in perovskite oxide heterostructures. J Appl Phys 117:115305. doi:10.1063/1.4915950

    Article  Google Scholar 

  64. Ngo TQ, McDaniel MD, Posadas A (2015) Oxygen vacancies at the γ-Al2O3/STO heterointerface grown by atomic layer deposition. In: MRS Proceedings, vol 1730. pp. mrsf14–1730. doi: 10.1557/opl.2015.294

  65. Niranjan M, Wang Y, Jaswal S, Tsymbal E (2009) Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. Phys Rev Lett 103:016804. doi:10.1103/PhysRevLett.103.016804

    Article  Google Scholar 

  66. Noguera C (2000) Polar oxide surfaces. J Phys: Condens Matter 12:R367

    Google Scholar 

  67. Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–426. doi:10.1038/nature02308

    Article  Google Scholar 

  68. Ohtomo A, Muller DA, Grazul JL, Hwang HY (2002) Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419:378–380. doi:10.1038/nature00977

    Article  Google Scholar 

  69. Okamoto S, Millis A, Spaldin N (2006) Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys Rev Lett 97:056802. doi:10.1103/PhysRevLett.97.056802

    Article  Google Scholar 

  70. Ong PV, Lee J, Pickett WE (2011) Tunable two-dimensional or three-dimensional electron gases by submonolayer La doping of SrTiO3. Phys Rev B 83:193106. doi:10.1103/PhysRevB.83.193106

    Article  Google Scholar 

  71. Park JW, Bogorin DF, Cen C (2010) Creation of a two-dimensional electron gas at an oxide interface on silicon. Nat Commun 1:94. doi:10.1038/ncomms1096

    Article  Google Scholar 

  72. Pauli SA, Willmott PR (2008) Conducting interfaces between polar and non-polar insulating perovskites. J Phys: Condens Matter 20:264012. doi:10.1088/0953-8984/20/26/264012

    Google Scholar 

  73. Pentcheva R, Pickett W (2009) Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3 (001) through polar distortion. Phys Rev Lett 102:107602. doi:10.1103/PhysRevLett.102.107602

    Article  Google Scholar 

  74. Pentcheva R, Pickett WE (2006) Charge localization or itineracy at LaAlO3∕SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons. Phys Rev B 74:035112. doi:10.1103/PhysRevB.74.035112

    Article  Google Scholar 

  75. Popović Z, Satpathy S, Martin R (2008) Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys Rev Lett 101:1–4. doi:10.1103/PhysRevLett.101.256801

    Google Scholar 

  76. Qiao L, Droubay T, Varga T (2011) Epitaxial growth, structure, and intermixing at the LaAlO3/SrTiO3 interface as the film stoichiometry is varied. Phys Rev B 83:085408. doi:10.1103/PhysRevB.83.085408

    Article  Google Scholar 

  77. Qiao L, Droubay TC, Shutthanandan V (2010) Thermodynamic instability at the stoichiometric LaAlO3/SrTiO3(001) interface. J Phys: Condens Matter 22:312201. doi:10.1088/0953-8984/22/31/312201

    Google Scholar 

  78. Rastogi A, Pulikkotil JJ, Auluck S (2012) Photoconducting state and its perturbation by electrostatic fields in oxide-based two-dimensional electron gas. Phys Rev B 86:075127. doi:10.1103/PhysRevB.86.075127

    Article  Google Scholar 

  79. Reyren N, Thiel S, Caviglia AD (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199. doi:10.1126/science.1146006

    Article  Google Scholar 

  80. Sai N, Lee J, Fennie CJ, Demkov AA (2007) Spin-filtering multiferroic-semiconductor heterojunctions. Appl Phys Lett 91:202910. doi:10.1063/1.2814961

    Article  Google Scholar 

  81. Seo H, Demkov AA (2011) First-principles study of polar LaAlO3 (001) surface stabilization by point defects. Phys Rev B 84:045440. doi:10.1103/PhysRevB.84.045440

    Article  Google Scholar 

  82. Seo SSA, Choi WS, Lee HN (2007) Optical study of the free-carrier response of LaTiO3/SrTiO3 superlattices. Phys Rev Lett 99:266801. doi:10.1103/PhysRevLett.99.266801

    Article  Google Scholar 

  83. Shi Y, Guo Y, Wang X (2013) A ferroelectric-like structural transition in a metal. Nat Mater 12:1024–1027. doi:10.1038/nmat3754

    Article  Google Scholar 

  84. Siemons W, Koster G, Yamamoto H (2007) Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping. Phys Rev Lett 98:196802. doi:10.1103/PhysRevLett.98.196802

    Article  Google Scholar 

  85. Sluka T, Tagantsev AK, Bednyakov P, Setter N (2013) Free-electron gas at charged domain walls in insulating BaTiO3. Nat Commun 4:1808. doi:10.1038/ncomms2839

    Article  Google Scholar 

  86. Sluka T, Tagantsev AK, Damjanovic D (2012) Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat Commun 3:748. doi:10.1038/ncomms1751

    Article  Google Scholar 

  87. Stengel M (2011) Electrostatic stability of insulating surfaces: Theory and applications. Phys Rev B 84:205432. doi:10.1103/PhysRevB.84.205432

    Article  Google Scholar 

  88. Stengel M, Vanderbilt D (2009) Berry-phase theory of polar discontinuities at oxide-oxide interfaces. Phys Rev B 80:241103. doi:10.1103/PhysRevB.80.241103

    Article  Google Scholar 

  89. Takizawa M, Wadati H, Tanaka K (2006) Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices. Phys Rev Lett 97:057601. doi:10.1103/PhysRevLett.97.057601

    Article  Google Scholar 

  90. Thiel S, Hammerl G, Schmehl A (2006) Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–1945. doi:10.1126/science.1131091

    Article  Google Scholar 

  91. Tsukazaki A, Ohtomo A, Kita T (2007) Quantum Hall effect in polar oxide heterostructures. Science 315:1388–1391. doi:10.1126/science.1137430

    Article  Google Scholar 

  92. Ueda K, Tabata H, Kawai T (1998) Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280:1064–1066

    Article  Google Scholar 

  93. Vul BM, Guro GM, Ivanchik II (1973) Encountering domains in ferroelectrics. Ferroelectrics 6:29–31. doi:10.1080/00150197308237691

    Article  Google Scholar 

  94. Wang Y, Liu X, Burton JD (2012) Ferroelectric instability under screened coulomb interactions. Phys Rev Lett 109:247601. doi:10.1103/PhysRevLett.109.247601

    Article  Google Scholar 

  95. Watanabe Y (1998) Theoretical stability of the polarization in a thin semiconducting ferroelectric. Phys Rev B 57:789–804. doi:10.1103/PhysRevB.57.789

    Article  Google Scholar 

  96. Watanabe Y, Okano M, Masuda A (2001) Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys Rev Lett 86:332–335. doi:10.1103/PhysRevLett.86.332

    Article  Google Scholar 

  97. Weissmann M, Ferrari V (2009) Ab initio study of a TiO2/LaAlO3 heterostructure. J Phys: Conf Ser 167:012060. doi:10.1088/1742-6596/167/1/012060

    Google Scholar 

  98. Xiang X, Qiao L, Xiao HY (2014) Effects of surface defects on two-dimensional electron gas at NdAlO3/SrTiO3 interface. Sci Rep 4:5477. doi:10.1038/srep05477

    Google Scholar 

  99. Yamada H, Ogawa Y, Ishii Y (2004) Engineered interface of magnetic oxides. Science 305:646–648. doi:10.1126/science.1098867

    Article  Google Scholar 

  100. You JH, Lee JH (2013) Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices. Phys Rev B 88:155111. doi:10.1103/PhysRevB.88.155111

    Article  Google Scholar 

  101. Yu L, Zunger A (2014) A unified mechanism for conductivity and magnetism at interfaces of insulating nonmagnetic oxides. Nat Commun 5:5118. doi:10.1038/ncomms6118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Demkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demkov, A.A., Kormondy, K.J., Fredrickson, K.D. (2016). Two-Dimensional Electron Gas at Oxide Interfaces. In: Netzer, F., Fortunelli, A. (eds) Oxide Materials at the Two-Dimensional Limit. Springer Series in Materials Science, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-28332-6_12

Download citation

Publish with us

Policies and ethics