Skip to main content

Platelets

  • Chapter
  • First Online:
Trauma Induced Coagulopathy
  • 1833 Accesses

Abstract

Traumatic bleeding is a clinical state that is (1) multifactorial with functional alterations in coagulation, fibrinolysis, complement, platelet, inflammation, and vascular parameters, (2) multiscale from molecule to cell to organ to multiorgan, and (3) dynamic from the moment of injury at an initial time t = 0 with a complex and patient-dependent trajectory. This chapter focuses on processes in the traumatic patient that impact platelet function. Platelet function and closely associated coagulation function are central to vascular integrity. The mechanisms and contributions of platelet dysfunction, either hypoactive or hyperactive, to trauma-induced coagulopathy (TIC) remain to be fully defined and prioritized. Identification of molecular changes within platelet signaling pathways leading to dysfunction allows the opportunity for pharmacological target identification relevant to TIC therapy. Finally, the laboratory or point-of-care assays to evaluate platelet function are reviewed. Importantly, successful hemostatic clotting under flow results in a 50 to 200-fold increase in platelet concentration within the hemostatic clot relative to whole blood, a biology that is difficult to recreate in a test tube under static conditions, but is accessible by microfluidic assay. This chapter reviews: (1) the extracellular modulators of platelet biology during trauma, (2) intracellular and autocrinic mechanisms of platelet dysfunction, and (3) diagnostic issues related to the measurement of platelet function in the trauma patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11:307–14.

    Article  CAS  PubMed  Google Scholar 

  2. Giles AR, Nesheim ME, Herring SW, Hoogendoorn H, Stump DC, Heldebrant CM. The fibrinolytic potential of the normal primate following the generation of thrombin in vivo. Thromb Haemost. 1990;63:476–81.

    CAS  PubMed  Google Scholar 

  3. Oshiro A, Yanagida Y, Gando S, Henzan N, Takahashi I, Makise H. Hemostasis during the early stages of trauma: comparison with disseminated intravascular coagulation. Crit Care. 2014;18:R61.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73:13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ostrowski SR, Sorensen AM, Windelov NA, Perner A, Welling KL, et al. High levels of soluble VEGF receptor 1 early after trauma are associated with shock, sympathoadrenal activation, glycocalyx degradation and inflammation in severely injured patients: a prospective study. Scand J Trauma Resusc Emerg Med. 2012;20:27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johansson PI, Windelov NA, Rasmussen LS, Sorensen AM, Ostrowski SR. Blood levels of histone-complexed DNA fragments are associated with coagulopathy, inflammation and endothelial damage early after trauma. J Emerg Trauma Shock. 2013;6:171–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73:60–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ostrowski SR, Johansson PI, Stensballe J, Rasmussen LS. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. J Trauma Acute Care Surg. 2011;73:60–6.

    Article  Google Scholar 

  9. Chen K, Pittman RN, Popel AS. Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: a quantitative analysis. Microvasc Res. 2009;78:107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubinstein I, Abassi Z, Coleman R, Milman F, Winaver J, Better OS. Involvement of nitric oxide system in experimental muscle crush injury. J Clin Invest. 1998;101:1325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeLano FA, Hoyt DB, Schmid-Schonbein GW. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci Transl Med. 2013;5:169ra11.

    PubMed  PubMed Central  Google Scholar 

  12. Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R, et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 2013;121:1875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Welsh JD, Stalker TJ, Voronov R, Muthard RW, Tomaiuolo M, Diamond SL, et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood. 2014;124:1808–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stalker TJ, Welsh JD, Tomaiuolo M, Wu J, Colace TV, Diamond SL, et al. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood. 2014;124:1824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Welsh JD, Colace TV, Muthard RW, Stalker TJ, Brass LF, Diamond SL. Platelet-targeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse. J Thromb Haemost. 2012;10:2344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Colace T, Fogarty PF, Panckeri KA, Li R, Diamond SL. Microfluidic assay of hemophilic blood clotting: distinct deficits in platelet and fibrin deposition at low factor levels. J Thromb Haemost. 2013;2013:12457.

    Google Scholar 

  17. Muthard RW, Diamond SL. Blood clots are rapidly assembled hemodynamic sensors: flow arrest triggers intraluminal thrombus contraction. Arter Thromb Vasc Biol. 2013;32:2938–45.

    Article  Google Scholar 

  18. Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214:739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mundell SJ, Barton JF, Mayo-Martin MB, Hardy AR, Poole AW. Rapid resensitization of purinergic receptor function in human platelets. J Thromb Haemost. 2008;6:1393–404.

    Article  CAS  PubMed  Google Scholar 

  20. Van PY, Schreiber MA. Hematologic issues in the geriatric surgical patient. Surg Clin North Am. 2015;95:129–38.

    Article  PubMed  Google Scholar 

  21. Vlaar AP, Straat M, Juffermans NP. The relation between aged blood products and onset of transfusion-related acute lung injury. A review of pre-clinical data. Clin Lab. 2011;57:267–72.

    CAS  PubMed  Google Scholar 

  22. Wenzel F, Hohlfeld T, Giers G. Soluble CD40L release as test for functional platelet loss. Clin Lab. 2012;58:337–42.

    CAS  PubMed  Google Scholar 

  23. Perales Villarroel JP, Figueredo R, Guan Y, Tomaiuolo M, Karamercan MA, Welsh J, et al. Increased platelet storage time is associated with mitochondrial dysfunction and impaired platelet function. J Surg Res. 2013;184:422–9.

    Article  CAS  PubMed  Google Scholar 

  24. Srihirun S, Sriwantana T, Unchern S, Kittikool D, Noulsri E, Pattanapanyasat K, et al. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation. PLoS One. 2012;7:e30380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foley ME, McNicol GP. An in-vitro study of acidosis, platelet function, and perinatal cerebral intraventricular haemorrhage. Lancet. 1977;1:1230–2.

    Article  CAS  PubMed  Google Scholar 

  26. Marumo M, Suehiro A, Kakishita E, Groschner K, Wakabayashi I. Extracellular pH affects platelet aggregation associated with modulation of store-operated Ca2+ entry. Thromb Res. 2001;104:353–60.

    Article  CAS  PubMed  Google Scholar 

  27. Etulain J, Negrotto S, Carestia A, Pozner RG, Romaniuk MA, D’Atri LP, et al. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb Haemost. 2012;107:99–110.

    Article  CAS  PubMed  Google Scholar 

  28. Wolosker H, Rocha JB, Engelender S, Panizzutti R, De Miranda J, de Meis L. Sarco/endoplasmic reticulum Ca2 + -ATPase isoforms: diverse responses to acidosis. Biochem J. 1997;321(Pt 2):545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reusch HP, Reusch R, Rosskopf D, Siffert W, Mann JF, Luft FC. Na+/H+ exchange in human lymphocytes and platelets in chronic and subacute metabolic acidosis. J Clin Invest. 1993;92:858–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor FB, Hoogendoorn H, Chang AC, Peer G, Nesheim ME, Catlett R, et al. Anticoagulant and fibrinolytic activities are promoted, not retarded, in vivo after thrombin generation in the presence of a monoclonal antibody that inhibits activation of protein C. Blood. 1992;79:1720–8.

    CAS  PubMed  Google Scholar 

  31. Penny WF, Ware JA. Platelet activation and subsequent inhibition by plasmin and recombinant tissue-type plasminogen activator. Blood. 1992;79:91–8.

    CAS  PubMed  Google Scholar 

  32. Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SHC, Weitz JI, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34:1977–84.

    Article  CAS  PubMed  Google Scholar 

  33. Goel MS, Diamond SL. Neutrophil cathepsin G promotes prothrombinase and fibrin formation under flow conditions by activating fibrinogen-adherent platelets. J Biol Chem. 2003;278:9458–63.

    Article  CAS  PubMed  Google Scholar 

  34. Ding N, Chen G, Hoffman R, Loughran PA, Sodhi CP, Hackam DJ, et al. Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet. 2014;7:615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen MJ, Brohi K, Calfee CS, Rahn P, Chesebro BB, Christiaans SC, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aktas B, Pozgajova M, Bergmeier W, Sunnarborg S, Offermanns S, Lee D, et al. Aspirin induces platelet receptor shedding via ADAM17 (TACE). J Biol Chem. 2005;280:39716–22.

    Article  CAS  PubMed  Google Scholar 

  37. Subramanian H, Zahedi RP, Sickmann A, Walter U, Gambaryan S. Phosphorylation of CalDAG-GEFI by protein kinase A prevents Rap1b activation. J Thromb Haemost. 2013;11:1574–82.

    Article  CAS  PubMed  Google Scholar 

  38. Kim SD, Sung HJ, Park SK, Kim TW, Park SC, Kim SK, et al. The expression patterns of RGS transcripts in platelets. Platelets. 2006;17:493–7.

    Article  CAS  PubMed  Google Scholar 

  39. Noé L, Di Michele M, Giets E, Thys C, Wittevrongel C, De Vos R, et al. Platelet Gs hypofunction and abnormal morphology resulting from a heterozygous RGS2 mutation. J Thromb Haemost. 2010;8:1594–603.

    Article  PubMed  Google Scholar 

  40. Cicmil M, Thomas JM, Leduc M, Bon C, Gibbins JM. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets. Blood. 2002;99:137–44.

    Article  CAS  PubMed  Google Scholar 

  41. Coxon CH, Sadler AJ, Huo J, Campbell RD. An investigation of hierarchical protein recruitment to the inhibitory platelet receptor, G6B-b. PLoS One. 2012;7:e49543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mori J, Pearce AC, Spalton JC, Grygielska B, Eble JA, Tomlinson MG, et al. G6b-B inhibits constitutive and agonist-induced signaling by glycoprotein VI and CLEC-2. J Biol Chem. 2008;283:35419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan X, Shi P, Dai J, Lu Y, Chen X, Liu X, et al. Paired immunoglobulin-like receptor B regulates platelet activation. Blood. 2014;124:2421–30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qiao JL, Shen Y, Gardiner EE, Andrews RK. Proteolysis of platelet receptors in humans and other species. Biol Chem. 2010;391:893–900.

    Article  CAS  PubMed  Google Scholar 

  45. Brill A, Chauhan AK, Canault M, Walsh MT, Bergmeier W, Wagner DD. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res. 2009;84:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duerschmied D, Canault M, Lievens D, Brill A, Cifuni SM, Bader M, et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factor-alpha-converting enzyme (ADAM17). J Thromb Haemost. 2009;7:1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Cieslak M, et al. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci U S A. 2007;104:1621–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bergmeier W, Rabie T, Strehl A, Piffath CL, Prostredna M, Wagner DD, et al. GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thromb Haemost. 2004;91:951–8.

    CAS  PubMed  Google Scholar 

  49. Choi W-S, Jeon O-H, Kim D-S. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost. 2010;8:1364–71.

    Article  CAS  PubMed  Google Scholar 

  50. Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost. 2013;11:1385–98.

    Article  CAS  PubMed  Google Scholar 

  51. Ramaker AJDWR, Meyer P, van der Meer J, Struys MMRF, Lisman T, van Oeveren W, et al. Effects of acidosis, alkalosis, hyperthermia and hypothermia on haemostasis: results of point-of-care testing with the thromboelastography analyser. Blood Coagul Fibrinolysis. 2009;20:436–9.

    Article  PubMed  Google Scholar 

  52. Dirkmann D, Hanke AA, Görlinger K, Peters J. Hypothermia and acidosis synergistically impair coagulation in human whole blood. Anesth Analg. 2008;106:1627–32.

    Article  PubMed  Google Scholar 

  53. Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89:228–32.

    Article  CAS  PubMed  Google Scholar 

  54. Davis PK, Musunuru H, Walsh M, Cassady R, Yount R, Losiniecki A, et al. Platelet dysfunction is an early marker for traumatic brain injury-induced coagulopathy. Neurocrit Care. 2013;18:201–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sillesen M, Johansson PI, Rasmussen LS, Jin G, Jepsen CH, Imam AM, et al. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage. J Trauma Acute Care Surg. 2013;74:1252–9.

    Article  CAS  PubMed  Google Scholar 

  56. Colace TV, Jobson J, Diamond SL. Relipidated tissue factor linked to collagen surfaces potentiates platelet adhesion and fibrin formation in a microfluidic model of vessel injury. Bioconjug Chem. 2011;22:2104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res. 2014;134:1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maloney SF, Brass LF, Diamond SL. P2Y(12) or P2Y(1) inhibitors reduce platelet deposition in a microfluidic model of thrombosis while apyrase lacks efficacy under flow conditions. Integr Biol (Camb). 2010;2:183.

    Article  CAS  Google Scholar 

  59. Colace TV, Muthard RW, Diamond SL. Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin. Arter Thromb Vasc Biol. 2012;32:1466–76.

    Article  CAS  Google Scholar 

  60. Li R, Fries S, Li X, Grosser T, Diamond SL. Microfluidic assay of platelet deposition on collagen by perfusion of whole blood from healthy individuals taking aspirin. Clin Chem. 2013;59:1195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li R, Diamond SL. Detection of platelet sensitivity to inhibitors of COX-1, P2Y, and P2Y using a whole blood microfluidic flow assay. Thromb Res. 2013;3848:515–8.

    Google Scholar 

  62. Li R, Elmongy H, Sims C, Diamond SL. Ex vivo recapitulation of trauma-induced coagulopathy and preliminary assessment of trauma patient platelet function under flow using microfluidics technology. J. Trauma Acute Care Surg. 2016, in press.

    Google Scholar 

Download references

Acknowledgments

The author thanks his collaborators and colleagues and students for many helpful and open discussions about platelet function, hemostasis, and trauma. This work was funded in part by NIH UM1 HL120877 TACTIC Consortium and NIH R01 HL103419 (SLD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Diamond Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diamond, S.L. (2016). Platelets. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics