Skip to main content

Peripheral Nervous System: Regenerative Therapies

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

There is a general belief that regeneration in the Peripheral Nervous System (PNS) is a successful event, however complete functional regeneration is seldom achieved in patients that have suffered a nerve traumatic injury. In fact, what is clinically observed is that these patients live with permanent disabilities that interfere negatively in their daily routine activities. In injuries where there is tissue loss a direct neurorraphy is not possible without causing nerve tension and, therefore, another repair technique is needed. Clinically, these lesions are repaired by nerve autograft, a technique that requires a second surgery to harvest a segment of a donor nerve, a disadvantage of the method. Also, the area covered by the donor nerve becomes denervated and its function is lost. Other techniques that are used by surgeons when the proximal stump is not available are end-to-side coaptation and nerve transfer. Experimental studies aiming at developing alternative strategies that can improve nerve regeneration have increased over the last decades. Particularly, the search for nerve guiding conduits that can be used to bridge the nerve defect has received much attention by researchers all over the world. These conduits can be made by either synthetic or biological materials, but ideally, they should be biodegradable and biocompatible, have adequate permeability so as to allow the entrance of nutrients into the tube lumen and yet avoid the passage of cells that can interfere negatively in the regeneration processes, such as fibroblasts and inflammatory cells. Other therapeutic strategies such as gene, cell and molecular therapies as well as physical therapies (exercise, electrical and LASER therapy) have also been tested in experimental studies with positive results. In this chapter we review the literature covering all these strategies in terms of experimental studies and existing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla FA, Smith PA (2001) Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol 85:630–643

    CAS  PubMed  Google Scholar 

  • Agrawal T, Gupta GK, Rai V, Carroll JD, Hamblin MR (2014) Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose-Response 12:619–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Majed AA, Neumann CM, Brushart TM, Gordon T (2000a) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J neurosci 20:2602–2608

    CAS  PubMed  Google Scholar 

  • Al-Majed AA, Brushart TM, Gordon T (2000b) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12:4381–4390

    CAS  PubMed  Google Scholar 

  • Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24:379–402

    Article  CAS  PubMed  Google Scholar 

  • Albe-Fessard D, Lombard M (1982) Use of an animal model to evaluate the origin of deafferentation pain and protection against it. In: Advances in pain research and therapy, Proceedings of the third world congress on pain, pp 691–700

    Google Scholar 

  • Allodi I, Udina E, Navarro X (2012) Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 98:16–37

    Article  CAS  PubMed  Google Scholar 

  • Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders JJ, Moges H, Wu X, Erbele ID, Alberico SL, Saidu EK, Smith JT, Pryor BA (2014) In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg Med 46:34–45

    Article  PubMed  Google Scholar 

  • Azkue JJ, Zimmermann M, Hsieh TF, Herdegen T (1998) Peripheral nerve insult induces NMDA receptor-mediated, delayed degeneration in spinal neurons. Eur J Neurosci 10:2204–2206

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Forrester JV, Zhao M (2011) DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. Cytokine 55:110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  CAS  PubMed  Google Scholar 

  • Baptista AF, Gomes JR, Oliveira JT, Santos SM, Vannier‐Santos MA, Martinez A (2008) High‐and low‐frequency transcutaneous electrical nerve stimulation delay sciatic nerve regeneration after crush lesion in the mouse. J Peripher Nerv Syst 13:71–80

    Article  PubMed  Google Scholar 

  • Basbaum AI, Wall PD (1976) Chronic changes in the response of cells in adult cat dorsal horn following partial deafferentation: the appearance of responding cells in a previously non-responsive region. Brain Res 116:181–204

    Article  CAS  PubMed  Google Scholar 

  • Bobinski F, Martins D, Bratti T, Mazzardo-Martins L, Winkelmann-Duarte E, Guglielmo L, Santos A (2011) Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience 194:337–348

    Article  CAS  PubMed  Google Scholar 

  • Bosch KD, Bradbury EJ, Verhaagen J, Fawcett JW, Mcmahon SB (2012) Chondroitinase ABC promotes plasticity of spinal reflexes following peripheral nerve injury. Exp Neurol 238:64–78

    Article  CAS  PubMed  Google Scholar 

  • Bossolasco P, Cova L, Calzarossa C, Rimoldi S, Borsotti C, Deliliers GL, Silani V, Soligo D, Polli E (2005) Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 193:312–325

    Article  CAS  PubMed  Google Scholar 

  • Brenner MJ, Jensen JN, Lowe JB III, Myckatyn TM, Fox IK, Hunter DA, Mohanakumar T, Mackinnon SE (2004) Anti-CD40 ligand antibody permits regeneration through peripheral nerve allografts in a nonhuman primate model. Plast Reconstr Surg 114:1802–1814

    Article  PubMed  Google Scholar 

  • Brushart TM, Tarlov EC, Mesulam M-M (1983) Specificity of muscle reinnervation after epineurial and individual fascicular suture of the rat sciatic nerve. J Hand Surg 8:248–253

    Article  CAS  Google Scholar 

  • Caldero J, Casanovas A, Sorribas A, Esquerda JE (1992) Calcitonin gene-related peptide in rat spinal cord motoneurons: subcellular distribution and changes induced by axotomy. Neuroscience 48:449–461

    Article  CAS  PubMed  Google Scholar 

  • Castro-Lopes JM, Tavares I, Coimbra A (1993) GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 620:287–291

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante Miranda de Assis D, Martins Lima Ê, Teixeira Goes B, Zugaib Cavalcanti J, Barbosa Paixão A, Vannier-Santos MA, Martinez AMB, Baptista AF (2014) The parameters of transcutaneous electrical nerve stimulation are critical to its regenerative effects when applied just after a sciatic crush lesion in mice. BioMed Res Int 2014:572949

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandran P, Sluka KA (2003) Development of opioid tolerance with repeated transcutaneous electrical nerve stimulation administration. Pain 102:195–201

    Article  CAS  PubMed  Google Scholar 

  • Chemnitz A, Björkman A, Dahlin L, Rosén B (2013) Functional outcome thirty years after median and ulnar nerve repair in childhood and adolescence. J Bone Joint Surg 95:329–337

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Walwyn W, Ennes HS, Kim H, Mcroberts JA, Marvizon JC (2014) BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals. Eur J Neurosci 39:1439–1454

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen P, Cescon M, Zuccolotto G, Nobbio L, Colombelli C, Filaferro M, Vitale G, Feltri ML, Bonaldo P (2015) Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization. Acta Neuropathol 129:97–113

    Article  CAS  PubMed  Google Scholar 

  • Chiu D, Janecka I, Krizek T, Wolff M, Lovelace R (1982) Autogenous vein graft as a conduit for nerve regeneration. Surgery 91:226–233

    CAS  PubMed  Google Scholar 

  • Clark WL, Trumble TE, Swiontkowski MF, Tencer AF (1992) Nerve tension and blood flow in a rat model of immediate and delayed repairs. J Hand Surg 17:677–687

    Article  CAS  Google Scholar 

  • Cobianchi S, Marinelli S, Florenzano F, Pavone F, Luvisetto S (2010) Short-but not long-lasting treadmill running reduces allodynia and improves functional recovery after peripheral nerve injury. Neuroscience 168:273–287

    Article  CAS  PubMed  Google Scholar 

  • Cohen LG, Bandinelli S, Findley TW, Hallett M (1991) Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114(Pt 1B):615–627

    Article  PubMed  Google Scholar 

  • Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, YU SP (2008) Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells 26:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Dahlin L (2008) Techniques of peripheral nerve repair. Scand J Surg 97:310–316

    CAS  PubMed  Google Scholar 

  • Dalal A, Tata M, Allegre G, Gekiere F, Bons N, Albe-Fessard D (1999) Spontaneous activity of rat dorsal horn cells in spinal segments of sciatic projection following transection of sciatic nerve or of corresponding dorsal roots. Neuroscience 94:217–228

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Anam K, Lazdun Y, Gimble JM, Elster EA (2014) Adipose-derived stromal cells promote allograft tolerance induction. Stem Cells Trans Med 3:1444–1450

    Article  CAS  Google Scholar 

  • de Albornoz PM, Delgado PJ, Forriol F, Maffulli N (2011) Non-surgical therapies for peripheral nerve injury. Br Med Bull 100:73–100, ldr005

    Article  Google Scholar 

  • de Almeida CEF, Junior JAF, Colli BO (2015) Morphometric and functional analysis of axonal regeneration after end-to-end and end-to-side neurorrhaphy in rats. Plast Reconstr Surg Glob Open 3:e326

    Article  Google Scholar 

  • Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227

    Article  CAS  PubMed  Google Scholar 

  • DI Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, Sanavio F, Cannito S, Zamara E, Bertero M (2008) Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 57:223–231

    Article  PubMed  CAS  Google Scholar 

  • DI Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63:1544–1552

    Article  CAS  PubMed  Google Scholar 

  • Dinis T, Elia R, Vidal G, Dermigny Q, Denoeud C, Kaplan D, Egles C, Marin F (2015) 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater 41:43–55

    Article  CAS  PubMed  Google Scholar 

  • Driscoll PJ, Glasby MA, Lawson GM (2002) An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J Orthop Res 20:370–375

    Article  PubMed  Google Scholar 

  • Dvali LT, Myckatyn TM (2008) End-to-side nerve repair: review of the literature and clinical indications. Hand Clin 24:455–460

    Article  PubMed  Google Scholar 

  • Espirito-Santo S, Mendonca HR, Menezes GD, Goulart VG, Gomes AL, Marra C, Melibeu AC, Serfaty CA, Sholl-Franco A, Campello-Costa P (2012) Intravitreous interleukin-2 treatment and inflammation modulates glial cells activation and uncrossed retinotectal development. Neuroscience 200:223–236

    Article  CAS  PubMed  Google Scholar 

  • Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58

    PubMed  PubMed Central  Google Scholar 

  • Félix SP, Pereira Lopes FR, Marques SA, Martinez A (2013) Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 33:468–477

    Article  PubMed  Google Scholar 

  • Ferreira AF, Real CC, Rodrigues AC, Alves AS, Britto LR (2010) Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain Res 1361:31–42

    Article  CAS  PubMed  Google Scholar 

  • Frattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, Baptista AF, Melo PA, Martinez AMB (2012) Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng A 18:2030–2039

    Article  CAS  Google Scholar 

  • Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Geuna S, Tos P, Battiston B, Giacobini-Robecchi MG (2004) Bridging peripheral nerve defects with muscle–vein combined guides. Neurol Res 26:139–144

    Article  PubMed  Google Scholar 

  • Gigo‐Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31:694–701

    Article  PubMed  Google Scholar 

  • Gnavi S, Blasio L, Tonda‐Turo C, Mancardi A, Primo L, Ciardelli G, Gambarotta G, Geuna S, Perroteau I (2014) Gelatin‐based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regener Med. doi:10.1002/term.1936 [Epub ahead of print]

    Google Scholar 

  • Gordon T, Sulaiman O, Boyd JG (2003) Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst 8:236–250

    Article  PubMed  Google Scholar 

  • Gordon T, Amirjani N, Edwards DC, Chan KM (2010) Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol 223:192–202

    Article  PubMed  Google Scholar 

  • Goulart CO, Jürgensen S, Souto A, Oliveira JT, de Lima S, Tonda-Turo C, Marques SA, de Almeida FM, Martinez AMB (2014) A combination of Schwann-cell grafts and aerobic exercise enhances sciatic nerve regeneration. PLoS ONE 9(10):e110090. doi: 10.1371/journal.pone.0110090.eCollection2014

  • Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56:1518–1531

    Article  PubMed  Google Scholar 

  • Grosheva M, Guntinas-Lichius O (2007) Significance of electromyography to predict and evaluate facial function outcome after acute peripheral facial palsy. Eur Arch Otorhinolaryngol 264:1491–1495

    Article  PubMed  Google Scholar 

  • Groves MJ, Christopherson T, Giometto B, Scaravilli F (1997) Axotomy-induced apoptosis in adult rat primary sensory neurons. J Neurocytol 26:615–624

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Gu X (2014) Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 35:2253–2263

    Article  CAS  PubMed  Google Scholar 

  • Guaiquil VH, Pan Z, Karagianni N, Fukuoka S, Alegre G, Rosenblatt MI (2014) VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions. Proc Natl Acad Sci 111:17272–17277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenard V, Gwynn LA, Wood PM (1995) Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro. J Neurosci 15:419–428

    CAS  PubMed  Google Scholar 

  • Gulati AK (1989) Axon regeneration through blood vessel allografts after cyclosporine treatment. J Neurosurg 70:115–120

    Article  CAS  PubMed  Google Scholar 

  • Gunn S, Cosetti M, Roland JT Jr (2010) Processed allograft: novel use in facial nerve repair after resection of a rare racial nerve paraganglioma. Laryngoscope 120:S206

    Article  PubMed  Google Scholar 

  • Gutierrez S, Hayashida K, Eisenach JC (2013) The puerperium alters spinal cord plasticity following peripheral nerve injury. Neuroscience 228:301–308

    Article  CAS  PubMed  Google Scholar 

  • Haan N, Song B (2014) Therapeutic application of electric fields in the injured nervous system. Adv Wound Care 3:156–165

    Article  Google Scholar 

  • Hazrati E (1997) Preliminary study of low level laser for treatment of long-standing sensory aberration in the inferior alveolar nerve. Plast Reconstr Surg 100:1945

    Google Scholar 

  • Hofmeijer J, Franssen H, van Schelven LJ, van Putten MJ (2013) Why are sensory axons more vulnerable for ischemia than motor axons? PLoS ONE 8(6), e67113. doi:10.1371/journal.pone.0067113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höke A, Redett R, Hameed H, Jari R, Zhou C, Li Z, Griffin Z, Brushart T (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T, Zhang X, Xu X, Wiesenfeld-Hallin Z (2006) Central consequences of peripheral nerve damage. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain. Elsevier/Churchill Livingstone, Edinburgh, pp 947–959

    Chapter  Google Scholar 

  • Huang X, Zhu Q, Jiang L, Zheng C, Zhu Z, Lu Q, Xu Y, Gu L, Liu X (2012) Study on immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells in rhesus monkey. Zhongguo xiu fu chong jian wai ke za zhi =Zhongguo xiufu chongjian waike zazhi= Chin J Reparative Reconstr Surg 26:993–1000

    Google Scholar 

  • Huang L, Li R, Liu W, Dai J, Du Z, Wang X, Ma J, Zhao J (2014) Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve. Neural Regen Res 9:1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Ouyang Y, Niu H, He N, Ke Q, Jin X, Li D, Fang J, Liu W, Fan C (2015) Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl Mater Interfaces 7:7189–7196

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, Ikada Y, Nakamura H (2014) Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res Part A 102:1370–1378

    Article  CAS  Google Scholar 

  • Ilha J, Araujo RT, Malysz T, Hermel EE, Rigon P, Xavier LL, Achaval M (2008) Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats. Neurorehabil Neural Repair 22:355–366

    Article  PubMed  Google Scholar 

  • Isaacs J, Browne T (2014) Overcoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft. Hand 9:131–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa K, Tanaka M, Black JA, Waxman SG (1999) Changes in expression of voltage-gated potassium channels in dorsal root ganglion neurons following axotomy. Muscle Nerve 22:502–507

    Article  CAS  PubMed  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiming K, Shizhen Z, Bo S, Shengxiu Z (1986) Experimental study of bridging the peripheral nerve gap with skeletal muscle. Microsurgery 7:183–189

    Article  Google Scholar 

  • Johnson PJ, Tatara A, Mccreedy DA, Shiu A, Sakiyama-Elbert SE (2010) Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter 6:5127–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3:494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karabekmez FE, Duymaz A, Moran SL (2009) Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. Hand 4:245–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Karacaoğlu E, Yüksel F, Peker F, Güler MM (2001) Nerve regeneration through an epineurial sheath: its functional aspect compared with nerve and vein grafts. Microsurgery 21:196–201

    Article  PubMed  Google Scholar 

  • Kato S, Ide C (1994) Axonal sprouting at the node of Ranvier of the peripheral nerve disconnected with the cell body. Restor Neurol Neurosci 6:181–187

    CAS  PubMed  Google Scholar 

  • Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H (2006) Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng 12:1451–1465

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim K-M, Hoffman-Kim D, Song H-K, Palmore GTR (2010) Quantitative control of neuron adhesion at a neural interface using a conducting polymer composite with low electrical impedance. ACS Appl Mater Interfaces 3:16–21

    Article  PubMed  CAS  Google Scholar 

  • Kimura J (2006) Assessment of nerve excitability properties in peripheral nerve disease. Peripheral Nerve Dis 7:381

    Google Scholar 

  • Koerber HR, Mirnics K, Lawson JJ (2006) Synaptic plasticity in the adult spinal dorsal horn: the appearance of new functional connections following peripheral nerve regeneration. Exp Neurol 200:468–479

    Article  CAS  PubMed  Google Scholar 

  • Kohama I, Ishikawa K, Kocsis JD (2000) Synaptic reorganization in the substantia gelatinosa after peripheral nerve neuroma formation: aberrant innervation of lamina II neurons by Abeta afferents. J Neurosci 20:1538–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konofaos P, Terzis JK (2013) FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg 29:141–148

    Article  PubMed  Google Scholar 

  • Krause MP, Dworski S, Feinberg K, Jones K, Johnston AP, Paul S, Paris M, Peles E, Bagli D, Forrest CR (2014) Direct genesis of functional rodent and human Schwann cells from skin mesenchymal precursors. Stem Cell Rep 3:85–100

    Article  CAS  Google Scholar 

  • Lee J-Y, Giusti G, Friedrich PF, Archibald SJ, Kemnitzer JE, Patel J, Desai N, Bishop AT, Shin AY (2012) The effect of collagen nerve conduits filled with collagen-glycosaminoglycan matrix on peripheral motor nerve regeneration in a rat model. J Bone Joint Surg 94:2084–2091

    Article  PubMed  Google Scholar 

  • Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci 100:9958–9961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou JT, Sum DC, Liu FC, Mao CC, Lai YS, Day YJ (2013) Spatial and temporal analysis of nociception-related spinal cord matrix metalloproteinase expression in a murine neuropathic pain model. J Chin Med Assoc 76:201–210

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY (2011) Peripheral nerve regeneration using composite poly (lactic acid‐caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res Part A 96:13–20

    Article  CAS  Google Scholar 

  • Liu HF, Chen ZG, Fang TL, Arnold P, Lineaweaver WC, Zhang J (2014) Changes of the donor nerve in end‐to‐side neurorrhaphies with epineurial window and partial neurectomy: a long‐term evaluation in the rat model. Microsurgery 34:136–144

    Article  PubMed  Google Scholar 

  • Liu Y, Xu X-C, Zou Y, Li S-R, Zhang B, Wang Y (2015) Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics. Neural Regen Res 10:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes FRP, de Moura Campos LC, Corrêa JD, Balduino A, Lora S, Langone F, Borojevic R, Martinez AMB (2006) Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 198:457–468

    Article  CAS  Google Scholar 

  • Lopes FP, Martin P, Frattini F, Biancalana A, Almeida F, Tomaz M, Melo P, Borojevic R, Han S, Martinez A (2013) Double gene therapy with granulocyte colony-stimulating factor and vascular endothelial growth factor acts synergistically to improve nerve regeneration and functional outcome after sciatic nerve injury in mice. Neuroscience 230:184–197

    Article  CAS  Google Scholar 

  • Lundborg G, Gelberman RH, Longo FM, Powell HC, Varon S (1982) In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol 41:412–422

    Article  CAS  PubMed  Google Scholar 

  • Macon JB (1979) Deafferentation hyperactivity in the monkey spinal trigeminal nucleus: neuronal responses to amino acid iontophoresis. Brain Res 161:549–554

    Article  CAS  PubMed  Google Scholar 

  • Makwana M, Werner A, Acosta-Saltos A, Gonitel R, Pararajasingam A, Ruff C, Rumajogee P, Cuthill D, Galiano M, Bohatschek M, Wallace AS, Anderson PN, Mayer U, Behrens A, Raivich G (2010) Peripheral facial nerve axotomy in mice causes sprouting of motor axons into perineuronal central white matter: time course and molecular characterization. J Comp Neurol 518:699–721

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Sung B, Ji R-R, Lim G (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22:7650–7661

    CAS  PubMed  Google Scholar 

  • Marinescu S-A, Zărnescu O, Mihai I-R, Giuglea C, Sinescu RD (2013) An animal model of peripheral nerve regeneration after the application of a collagen-polyvinyl alcohol scaffold and mesenchymal stem cells. Romanian J Morphol Embryol = Revue roumaine de morphologie et embryologie 55:891–903

    Google Scholar 

  • Marqueste T, Alliez J-R, Alluin O, Jammes Y, Decherchi P (2004) Neuromuscular rehabilitation by treadmill running or electrical stimulation after peripheral nerve injury and repair. J Appl Physiol 96:1988–1995

    Article  PubMed  Google Scholar 

  • Mason MR, Tannemaat MR, Malessy MJ, Verhaagen J (2011) Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr Gene Ther 11:75–89

    Article  CAS  PubMed  Google Scholar 

  • Mendonca HR, Araujo SE, Gomes AL, Sholl-Franco A, Da Cunha Faria Melibeu A, Serfaty CA, Campello-Costa P (2010) Expression of GAP-43 during development and after monocular enucleation in the rat superior colliculus. Neurosci Lett 477:23–27

    Article  CAS  PubMed  Google Scholar 

  • Millesi H (1984) Nerve grafting. Clin Plast Surg 11:105–113

    CAS  PubMed  Google Scholar 

  • Millesi H, Meissl G, Berger A (1976) Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg 58:209–218

    CAS  PubMed  Google Scholar 

  • Mohammed IF, Kaka LN (2007) Promotion of regenerative processes in injured peripheral nerve induced by low-level laser therapy. Photomed Laser Surg 25:107–111

    Article  PubMed  Google Scholar 

  • Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ (2002) Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 22:6724–6731

    CAS  PubMed  Google Scholar 

  • Moradzadeh A, Borschel GH, Luciano JP, Whitlock EL, Hayashi A, Hunter DA, Mackinnon SE (2008) The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol 212:370–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ (2008) Growth cone chemotaxis. Trends Neurosci 31:90–98

    Article  CAS  PubMed  Google Scholar 

  • Murinson BB, Archer DR, Li Y, Griffin JW (2005) Degeneration of myelinated efferent fibers prompts mitosis in Remak Schwann cells of uninjured C-fiber afferents. J Neurosci 25:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Navarro X (2009) Chapter 27: Neural plasticity after nerve injury and regeneration. Int Rev Neurobiol 87:483–505

    Article  PubMed  Google Scholar 

  • Navarro X, Vivó M, Valero-Cabré A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163–201

    Article  CAS  PubMed  Google Scholar 

  • Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    Article  CAS  PubMed  Google Scholar 

  • Nicolelis MA, Lin RC, Woodward DJ, Chapin JK (1993) Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361:533–536

    Article  CAS  PubMed  Google Scholar 

  • Oliveira J, Almeida F, Biancalana A, Baptista A, Tomaz M, Melo P, Martinez A (2010) Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience 170:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JT, Mostacada K, de Lima S, Martinez A (2013) Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. Int Rev Neurobiol 108:59–77

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JT, Bittencourt-Navarrete RE, de Almeida FM, Tonda-Turo C, Martinez AM, Franca JG (2014a) Enhancement of median nerve regeneration by mesenchymal stem cells engraftment in an absorbable conduit: improvement of peripheral nerve morphology with enlargement of somatosensory cortical representation. Front Neuroanat 8:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira JT, Lopes FRP, de Almeida FM, Martinez AMB (2014b) Gene therapy in rodents models of traumatic peripheral nerve injury. J Cell Sci Ther 5:1

    CAS  Google Scholar 

  • Pace LA, Plate JF, Mannava S, Barnwell JC, Koman LA, Li Z, Smith TL, van Dyke M (2013) A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue Eng A 20:507–517

    Google Scholar 

  • Pfister BJ, Gordon T, Loverde JR, Kochar AS, Mackinnon SE, Cullen DK (2011) Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev™ Biomed Eng 39:81–124

    Google Scholar 

  • Phillips BZ, Franco MJ, Yee A, Tung TH, Mackinnon SE, Fox IK (2014) Direct radial to ulnar nerve transfer to restore intrinsic muscle function in combined proximal median and ulnar nerve injury: case report and surgical technique. J hand surg 39:1358–1362

    Article  Google Scholar 

  • Poppler LH, Davidge K, Lu JC, Armstrong J, Fox IK, Mackinnon SE (2015) Alternatives to sural nerve grafts in the upper extremity. Hand 10:68–75

    Article  PubMed  Google Scholar 

  • Purves D (1975) Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol 252:429–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarta S, Baeumer BE, Scherbakov N, Andratsch M, Rose-John S, Dechant G, Bandtlow CE, Kress M (2014) Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 34:13222–13233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajnicek AM, Robinson KR, Mccaig CD (1998) The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge. Dev Biol 203:412–423

    Article  CAS  PubMed  Google Scholar 

  • Rappaport WD, Valente J, Hunter GC, Rance NE, Lick S, Lewis T, Neal D (1993) Clinical utilization and complications of sural nerve biopsy. Am J Surg 166:252–256

    Article  CAS  PubMed  Google Scholar 

  • Rochkind S (2009) Phototherapy in peripheral nerve regeneration: from basic science to clinical study. Neurosurg Focus 26:E8

    Article  PubMed  Google Scholar 

  • Rosberg H-E, Carlsson KS, Dahlin LB (2005) Prospective study of patients with injuries to the hand and forearm: costs, function, and general health. Scand J Plast Reconstr Surg Hand Surg 39:360–369

    Article  PubMed  Google Scholar 

  • Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russia HSC (2015) 1–2 Phase of safety and efficacy of patient intraneural injections of VEGF165 plasmid gene therapy on regeneration after total severance or disruption of the entire nerve fiber. [Online]. Available:https://www.clinicaltrials.gov/ct2/show/NCT02352649

  • Sabatier MJ, Redmon N, Schwartz G, English AW (2008) Treadmill training promotes axon regeneration in injured peripheral nerves. Exp Neurol 211:489–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahakyants T, Lee J-Y, Friedrich PF, Bishop AT, Shin AY (2013) Return of motor function after repair of a 3-cm gap in a rabbit peroneal nerve. J Bone Joint Surg 95:1952–1958

    Article  PubMed  Google Scholar 

  • Schlosshauer B, Dreesmann L, Schaller H-E, Sinis N (2006) Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery 59:740–748

    Article  PubMed  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  CAS  PubMed  Google Scholar 

  • Scholz T, Krichevsky A, Sumarto A, Jaffurs D, Wirth GA, Paydar K, Evans G (2009) Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg 25:339–344

    Article  PubMed  Google Scholar 

  • Sengelaub DR, Muja N, Mills AC, Myers WA, Churchill JD, Garraghty PE (1997) Denervation-induced sprouting of intact peripheral afferents into the cuneate nucleus of adult rats. Brain Res 769:256–262

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M (2007) Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 359:915–920

    Article  CAS  PubMed  Google Scholar 

  • Sittel C, Stennert E (2001) Prognostic value of electromyography in acute peripheral facial nerve palsy. Otol Neurotol 22:100–104

    Article  CAS  PubMed  Google Scholar 

  • Staniforth P, Fisher T (1978) The effects of sural nerve excision in autogenous nerve grafting. Hand 10:(2)187–190

    PubMed  Google Scholar 

  • Sumner B, Sutherland FI (1973) Quantitative electron microscopy on the injured hypoglossal nucleus in the rat. J Neurocytol 2:315–328

    Article  CAS  PubMed  Google Scholar 

  • Suri S, Schmidt CE (2010) Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng A 16:1703–1716

    Article  CAS  Google Scholar 

  • Tamaki T, Uchiyama Y, Okada Y, Ishikawa T, Sato M, Akatsuka A, Asahara T (2005) Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation 112:2857–2866

    Article  PubMed  Google Scholar 

  • Tamaki T, Hirata M, Soeda S, Nakajima N, Saito K, Nakazato K, Okada Y, Hashimoto H, Uchiyama Y, Mochida J (2014) Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells. PLoS ONE 9:e91257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tofaris GK, Patterson PH, Jessen KR, Mirsky R (2002) Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 22:6696–6703

    CAS  PubMed  Google Scholar 

  • Tung TH (2010) Tacrolimus (FK506): safety and applications in reconstructive surgery. Hand 5:1–8

    Article  PubMed  Google Scholar 

  • Tyzack GE, Sitnikov S, Barson D, Adams-Carr KL, Lau NK, Kwok JC, Zhao C, Franklin RJ, Karadottir RT, Fawcett JW, Lakatos A (2014) Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun 5:4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • University C (2015) Effect of mesenchymal stem cells transfusion on the diabetic peripheral neuropathy patients [Online]. Available: https://www.clinicaltrials.gov/ct2/show/NCT02387749

  • Valero-Cabre A, Tsironis K, Skouras E, Perego G, Navarro X, Neiss WF (2001) Superior muscle reinnervation after autologous nerve graft or poly-L-lactide-epsilon-caprolactone (PLC) tube implantation in comparison to silicone tube repair. J Neurosci Res 63:214–223

    Article  CAS  PubMed  Google Scholar 

  • Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223:537–547

    Article  CAS  PubMed  Google Scholar 

  • Wang W-Z, Crain GM, Baylis W, Tsai T-M (1996) Outcome of digital nerve injuries in adults. J Hand Surg 21:138–143

    Article  CAS  Google Scholar 

  • Wang C-Z, Chen Y-J, Wang Y-H, Yeh M-L, Huang M-H, Ho M-L, Liang J-I, Chen C-H (2014a) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9:e103348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Pan M, Wen J, Tang Y, Hamilton AD, Li Y, Qian C, Liu Z, Wu W, Guo J (2014b) A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly (lactic-co-glycolic acid) conduit. Neural Regen Res 9:2132

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Han N, Wang J, Zheng H, Peng J, Kou Y, Xu C, An S, Yin X, Zhang P (2014c) Improved peripheral nerve regeneration with sustained release nerve growth factor microspheres in small gap tubulization. Am J Transl Res 6:413

    PubMed  PubMed Central  Google Scholar 

  • Widgerow AD, Salibian AA, Lalezari S, Evans GR (2013) Neuromodulatory nerve regeneration: adipose tissue‐derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J Neurosci Res 91:1517–1524

    Article  CAS  PubMed  Google Scholar 

  • Wilgis ES, Maxwell GP (1979) Distal digital nerve grafts: clinical and anatomical studies. J Hand Surg 4:439–443

    Article  CAS  Google Scholar 

  • Wolfe SW, Johnsen PH, Lee SK, Feinberg JH (2014) Long-nerve grafts and nerve transfers demonstrate comparable outcomes for axillary nerve injuries. J Hand Surg 39:1351–1357

    Article  Google Scholar 

  • Wood JN, Boorman JP, Okuse K, Baker MD (2004) Voltage-gated sodium channels and pain pathways. J Neurobiol 61:55–71

    Article  CAS  PubMed  Google Scholar 

  • Wood MD, Kemp SW, Weber C, Borschel GH, Gordon T (2011) Outcome measures of peripheral nerve regeneration. Ann Anat-Anatomischer Anzeiger 193:321–333

    Article  Google Scholar 

  • Wood MD, Kemp SW, Liu EH, Szynkaruk M, Gordon T, Borschel GH (2014) Rat‐derived processed nerve allografts support more axon regeneration in rat than human‐derived processed nerve xenografts. J Biomed Mater Res Part A 102:1085–1091

    Article  CAS  Google Scholar 

  • Woolf CJ, Shortland P, Reynolds M, Ridings J, Doubell T, Coggeshall RE (1995) Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol 360:121–134

    Article  CAS  PubMed  Google Scholar 

  • Yan LP, Liu YG, Wu XT, Li SD, Ma C (2013) Effect of electroacupuncture intervention on N-methyl-D-aspartic acid receptor expression in spinal cord in rats with chronic constrictive injury of the sciatic nerve. Zhen Ci Yan Jiu 38:380–385

    CAS  PubMed  Google Scholar 

  • Yang X-N, Jin Y-Q, Bi H, Wei W, Cheng J, Liu Z-Y, Shen Z, Qi Z-L, Cao Y (2013) Peripheral nerve repair with epimysium conduit. Biomaterials 34:5606–5616

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Mccaig CD, Zhao M (2009) Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 19:855–868

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Pandit A, Yao S, Mccaig CD (2011) Electric field-guided neuron migration: a novel approach in neurogenesis. Tissue Eng B Rev 17:143–153

    Article  Google Scholar 

  • Zelano J, Berg A, Thams S, Hailer NP, Cullheim S (2009) SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury. J Comp Neurol 517:670–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lv X, Tong X, Jia H, Li Z (2012) Study on molecular mechanism for improving neural regeneration after repair of sciatic nerve defect in rat by acellular nerve allograft. Synapse 66:52–60

    Article  CAS  PubMed  Google Scholar 

  • Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS (2011) Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep 7:394–403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Teixeira Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oliveira, J.T. et al. (2016). Peripheral Nervous System: Regenerative Therapies. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_7

Download citation

Publish with us

Policies and ethics