Skip to main content

The Development of a Stem Cell Therapy for Deafness

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

Medicine is at the doorstep of a phenomenal revolution, brought about by the advances in the stem cell field and the development of new technologies to engineer cells and tissues into more complex organs. The promise of a true regenerative approach to organ damage and loss of function is closer than ever to becoming a reality. The auditory field is participating in these developments with high expectations. Since the cochlea is an organ of difficult access and with very limited regenerative capacity, conventional therapeutic approaches have failed and, currently, the only treatments available are in the form of hearing aids and cochlear implants. The potential restoration of hearing by the use of exogenous stem cells will offer a solution to a condition that has very limited options. In this chapter, we review the increasing volume of research on this emerging field and discuss the key elements that need to be developed further, in order to translate the basic science into a clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas L, Rivolta MN (2015) Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: a simple model to study hair cell loss and regeneration. Hear Res 325:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agterberg MJ, Versnel H, van Dijk LM, de Groot JC, Klis SF (2009) Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened guinea pigs. J Assoc Res Otolaryngol 10:355–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschuler RA, O’Shea KS, Miller JM (2008) Stem cell transplantation for auditory nerve replacement. Hear Res 242:110–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Backhouse S, Coleman B, Shepherd R (2008) Surgical access to the mammalian cochlea for cell-based therapies. Exp Neurol 214:193–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasubramaniyan V, de Haas AH, Bakels R, Koper A, Boddeke HW, Copray JC (2004) Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro. Neurosci Res 49:261–265

    Article  CAS  PubMed  Google Scholar 

  • Berthold CH, Carlstedt T (1977) Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. III. Myelinated fibres in S1 dorsal rootlets. Acta physiologica Scandinavica Supplementum 446: 43–60

    Google Scholar 

  • Bogaerts S, Douglas S, Corlette T, Pau H, Saunders D, McKay S, Oleskevich S (2008) Microsurgical access for cell injection into the mammalian cochlea. J Neurosci Methods 168:156–163

    Article  PubMed  Google Scholar 

  • Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Stolt C, Wegner M, Lefebvre PP, Malgrange B (2010) Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10. J Neurochem 114:1827–1839

    Article  CAS  PubMed  Google Scholar 

  • Campanelli JT, Sandrock RW, Wheatley W, Xue H, Zheng J, Liang F, Chesnut JD, Zhan M, Rao MS, Liu Y (2008) Expression profiling of human glial precursors. BMC Dev Biol 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter P, Smith L, Ryan M (2004) Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer 11(4):659–687

    Article  CAS  PubMed  Google Scholar 

  • Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, Liu Z, Taketo MM, Oghalai JS, Nusse R, Zuo J, Cheng AG (2012) Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci U S A 109:8167–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590

    CAS  PubMed  Google Scholar 

  • Chen W, Cacciabue-Rivolta DI, Moore HD, Rivolta MN (2007) The human fetal cochlea can be a source for auditory progenitors/stem cells isolation. Hear Res 233:23–29

    Article  PubMed  Google Scholar 

  • Chen W, Johnson SL, Marcotti W, Andrews PW, Moore HD, Rivolta MN (2009) Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells. Stem Cells 27:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S, Milo M, Thurlow JK, Andrews PW, Marcotti W, Moore HD, Rivolta MN (2012) Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 490:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YB, Cho HH, Jang S, Jeong HS, Park JS (2011) Transplantation of neural differentiated human mesenchymal stem cells into the cochlea of an auditory-neuropathy guinea pig model. J Korean Med Sci 26:492–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman B, Hardman J, Coco A, Epp S, de Silva M, Crook J, Shepherd R (2006) Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant 15:369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman B, Fallon JB, Pettingill LN, de Silva MG, Shepherd RK (2007) Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Exp Cell Res 313:232–243

    Article  CAS  PubMed  Google Scholar 

  • Coppens AG, Kiss R, Heizmann CW, Schäfer BW, Poncelet L (2001) Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development. Brain Res Dev Brain Res 126(2):191–199

    Article  CAS  PubMed  Google Scholar 

  • Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge AS (2006) Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J Neurobiol 66:1489–1500

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468

    Article  PubMed  Google Scholar 

  • Daudet N, Vago P, Ripoll C, Humbert G, Pujol R, Lenoir M (1998) Characterization of atypical cells in the juvenile rat organ of corti after aminoglycoside ototoxicity. J Comp Neurol 401:145–162

    Article  CAS  PubMed  Google Scholar 

  • Dincer Z, Piao J, Niu L, Ganat Y, Kriks S, Zimmer B, Shi SH, Tabar V, Studer L (2013) Specification of functional cranial placode derivatives from human pluripotent stem cells. Cell Rep 5:1387–1402

    Article  CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Eisen MD (2003) Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing. Otol Neurotol 24:500–506

    Article  PubMed  Google Scholar 

  • Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18:7811–7821

    CAS  PubMed  Google Scholar 

  • Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616–1619

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Li L, Nevill G (1998) Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 397:69–88

    Article  CAS  PubMed  Google Scholar 

  • Fraher JP (2000) The transitional zone and CNS regeneration. J Anat 196(Pt 1):137–158

    PubMed  Google Scholar 

  • Fritzsch B, Farinas I, Reichardt LF (1997) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17:6213–6225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Wang S, Liu Y, Wang J, Wang G, Chen Q, Gong S (2009) Study on neural stem cell transplantation into natural rat cochlea via round window. Am J Otolaryngol 30:8–16

    Article  PubMed  Google Scholar 

  • Gómez-Casati ME, Murtie J, Taylor B, Corfas G (2010) Cell-specific inducible gene recombination in postnatal inner ear supporting cells and glia. J Assoc Res Otolaryngol 11(1):19–26

    Article  PubMed  Google Scholar 

  • Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–393

    Article  CAS  PubMed  Google Scholar 

  • Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48:457–476

    Article  CAS  PubMed  Google Scholar 

  • Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128:147–165

    Article  CAS  PubMed  Google Scholar 

  • Hertzano R, Puligilla C, Chan SL, Timothy C, Depireux DA, Ahmed Z, Wolf J, Eisenman DJ, Friedman TB, Riazuddin S, Kelley MW, Strome SE (2010) CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol 11:407–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertzano R, Elkon R, Kurima K, Morrisson A, Chan SL, Sallin M, Biedlingmaier A, Darling DS, Griffith AJ, Eisenman DJ, Strome SE (2011) Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLoS Genet 7:e1002309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand MS, Dahl HH, Hardman J, Coleman B, Shepherd RK, de Silva MG (2005) Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J Assoc Res Otolaryngol 6:341–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Holley MC (2005) Keynote review: the auditory system, hearing loss and potential targets for drug development. Drug Discov Today 10:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Honeder C, Landegger LD, Engleder E, Gabor F, Plasenzotti R, Plenk H, Kaider A, Hirtler L, Gstoettner W, Arnoldner C (2015) Effects of intraoperatively applied glucocorticoid hydrogels on residual hearing and foreign body reaction in a guinea pig model of cochlear implantation. Acta Otolaryngol 135:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Ulfendahl M, Olivius NP (2004) Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Exp Neurol 185:7–14

    Article  PubMed  Google Scholar 

  • Hu Z, Andang M, Ni D, Ulfendahl M (2005a) Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res 1051:137–144

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wei D, Johansson CB, Holmstrom N, Duan M, Frisen J, Ulfendahl M (2005b) Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res 302:40–47

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Ulfendahl M, Prieskorn DM, Olivius P, Miller JM (2009) Functional evaluation of a cell replacement therapy in the inner ear. Otol Neurotol 30:551–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhang B, Luo X, Zhang L, Wang J, Bojrab D 2nd, Jiang H (2014) The astroglial reaction along the mouse cochlear nerve following inner ear damage. Otolaryngol Head Neck Surg 150(1):121–125

    Article  PubMed  Google Scholar 

  • Hurley PA, Crook JM, Shepherd RK (2007) Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci 26(7):1813–1821

    Article  PubMed  Google Scholar 

  • Iguchi F, Nakagawa T, Tateya I, Endo T, Kim TS, Dong Y, Kita T, Kojima K, Naito Y, Omori K, Ito J (2004) Surgical techniques for cell transplantation into the mouse cochlea. Acta Otolaryngol Suppl 551:43–47

    PubMed  Google Scholar 

  • Ito J, Murata M, Kawaguchi S (2001) Regeneration and recovery of the hearing function of the central auditory pathway by transplants of embryonic brain tissue in adult rats. Exp Neurol 169:30–35

    Article  CAS  PubMed  Google Scholar 

  • Itoyama Y, Webster HD, Richardson EP, Trapp BD (1983) Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann Neurol 14:339–346

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276

    Article  CAS  PubMed  Google Scholar 

  • Jeon SJ, Fujioka M, Kim SC, Edge AS (2011) Notch signaling alters sensory or neuronal cell fate specification of inner ear stem cells. J Neurosci 31:8351–8358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongkamonwiwat N, Chen W, Rivolta MN (2009) Survival and differentiation of hESCs-derived Otic Neuroprogenitor cells (ONPs) transplanted into the gerbil cochlea. UK National Stem Cell Network, Oxford, p 113

    Google Scholar 

  • Kada S, Nakagawa T, Ito J (2009) A mouse model for degeneration of the spiral ligament. J Assoc Res Otolaryngol 10:161–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamiya K, Fujinami Y, Hoya N, Okamoto Y, Kouike H, Komatsuzaki R, Kusano R, Nakagawa S, Satoh H, Fujii M, Matsunaga T (2007) Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes. Am J Pathol 171:214–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400

    CAS  PubMed  Google Scholar 

  • Kawamoto K, Izumikawa M, Beyer LA, Atkin GM, Raphael Y (2009) Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear Res 247:17–26

    Article  CAS  PubMed  Google Scholar 

  • Kelley MW, Talreja DR, Corwin JT (1995) Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J Neurosci 15:3013–3026

    CAS  PubMed  Google Scholar 

  • Kemp DT (2002) Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 63:223–241

    Article  PubMed  Google Scholar 

  • Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang H, Schulte BA, Schmiedt RA (2005) Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons. J Assoc Res Otolaryngol 6:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang H, Schulte BA, Goddard JC, Hedrick M, Schulte JB, Wei L, Schmiedt RA (2008) Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effects of timing after injury. J Assoc Res Otolaryngol 9:225–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang H, Li M, Kilpatrick LA, Zhu J, Samuvel DJ, Krug EL, Goddard JC (2011) Sox2 up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner ear. J Assoc Res Otolaryngol 12(2):151–171

    Article  PubMed  Google Scholar 

  • Li H, Liu H, Heller S (2003a) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Li H, Roblin G, Liu H, Heller S (2003b) Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A 100:13495–13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malgrange B, Thiry M, Van De Water TR, Nguyen L, Moonen G, Lefebvre PP (2002) Epithelial supporting cells can differentiate into outer hair cells and Deiters’ cells in the cultured organ of Cort. Cell Mol Life Sci 59:1744–1757

    Article  CAS  PubMed  Google Scholar 

  • Marcotti W, Geleoc GS, Lennan GW, Kros CJ (1999) Transient expression of an inwardly rectifying potassium conductance in developing inner and outer hair cells along the mouse cochlea. Pflugers Arch 439:113–122

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka AJ, Kondo T, Miyamoto RT, Hashino E (2006) In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope 116:1363–1367

    Article  PubMed  Google Scholar 

  • Matsuoka AJ, Kondo T, Miyamoto RT, Hashino E (2007) Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope 117:1629–1635

    Article  PubMed  Google Scholar 

  • Moore DR, Shannon RV (2009) Beyond cochlear implants: awakening the deafened brain. Nat Neurosci 12:686–691

    Article  CAS  PubMed  Google Scholar 

  • Morest DK, Cotanche DA (2004) Regeneration of the inner ear as a model of neural plasticity. J Neurosci Res 78:455–460

    Article  CAS  PubMed  Google Scholar 

  • Nadol JB Jr (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117:220–228

    Article  PubMed  Google Scholar 

  • Nadol JB Jr, Young YS, Glynn RJ (1989) Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98:411–416

    Article  PubMed  Google Scholar 

  • Nayagam BA, Minter RL (2011) A comparison of in vitro treatments for directing stem cells toward a sensory neural fate. Am J Otolaryngol 33:37–46

    Article  PubMed  Google Scholar 

  • Nayagam BA, Backhouse SS, Cimenkaya C, Shepherd RK (2012) Hydrogel limits stem cell dispersal in the deaf cochlea: implications for cochlear implants. J Neural Eng 9:065001

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Nakagawa T, Ono K, Ogita H, Sakamoto T, Yamamoto N, Okita K, Yamanaka S, Ito J (2009) Transplantation of mouse induced pluripotent stem cells into the cochlea. Neuroreport 20:1250–1254

    Article  PubMed  Google Scholar 

  • Nishimura K, Nakagawa T, Sakamoto T, Ito J (2012) Fates of murine pluripotent stem cell-derived neural progenitors following transplantation into mouse cochleae. Cell Transplant 21:763–771

    Article  PubMed  Google Scholar 

  • Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Geleoc GS, Edge A, Holt JR, Heller S (2007) Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol 8:18–31

    Article  PubMed  Google Scholar 

  • Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S (2010) Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141:704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren B, Jin Z, Jiao Y, Kostyszyn B, Olivius P (2011) Horseradish peroxidase dye tracing and embryonic statoacoustic ganglion cell transplantation in the rat auditory nerve trunk. Brain Res 1377:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pandit SR, Sullivan JM, Egger V, Borecki AA, Oleskevich S (2011) Functional effects of adult human olfactory stem cells on early-onset sensorineural hearing loss. Stem Cells 29:670–677

    Article  PubMed  Google Scholar 

  • Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA (2007) Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 232:29–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Raphael Y (2002) Cochlear pathology, sensory cell death and regeneration. Br Med Bull 63:25–38

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen H, Bostrom M, Gerdin B, Kinnefors A, Nyberg G, Engstrand T, Miller JM, Lindholm D (2005) Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear Res 203:180–191

    Article  CAS  PubMed  Google Scholar 

  • Reyes JH, O’Shea KS, Wys NL, Velkey JM, Prieskorn DM, Wesolowski K, Miller JM, Altschuler RA (2008) Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. J Neurosci 28:12622–12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rio C, Dikkes P, Liberman MC, Corfas G (2002) Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol 442(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Nasr M, Ealy M, Durruthy-Durruthy R, Waldhaus J, Diaz GH, Joubert LM, Oshima K, Heller S (2014) Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev 23:1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubel EW, Dew LA, Roberson DW (1995) Mammalian vestibular hair cell regeneration. Science 267:701–707

    Article  CAS  PubMed  Google Scholar 

  • Sales-Pardo I, Avendano A, Martinez-Munoz V, Garcia-Escarp M, Celis R, Whittle P, Barquinero J, Domingo JC, Marin P, Petriz J (2006) Flow cytometry of the side population: tips & tricks. Cell Oncol 28:37–53

    PubMed  PubMed Central  Google Scholar 

  • Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van De Water T, Zine A (2007) Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells 25:332–339

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt RA, Okamura HO, Lang H, Schulte BA (2002) Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis. J Assoc Res Otolaryngol 3:223–233

    Article  CAS  PubMed  Google Scholar 

  • Sekiya T, Yagihashi A, Shimamura N, Asano K, Suzuki S, Matsubara A, Namba A, Shinkawa H (2003) Apoptosis of auditory neurons following central process injury. Exp Neurol 184:648–658

    Article  PubMed  Google Scholar 

  • Sekiya T, Kojima K, Matsumoto M, Kim TS, Tamura T, Ito J (2006) Cell transplantation to the auditory nerve and cochlear duct. Exp Neurol 198:12–24

    Article  PubMed  Google Scholar 

  • Sekiya T, Holley MC, Kojima K, Matsumoto M, Helyer R, Ito J (2007) Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve. Eur J Neurosci 25:2307–2318

    Article  PubMed  Google Scholar 

  • Sekiya T, Matsumoto M, Kojima K, Ono K, Kikkawa YS, Kada S, Ogita H, Horie RT, Viola A, Holley MC, Ito J (2011) Mechanical stress-induced reactive gliosis in the auditory nerve and cochlear nucleus. J Neurosurg 114(2):414–425

    Article  PubMed  Google Scholar 

  • Shi F, Corrales CE, Liberman MC, Edge AS (2007) BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci 26:3016–3023

    Article  PubMed  Google Scholar 

  • Shi F, Kempfle JS, Edge AS (2012) Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci 32:9639–9648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spahr AJ, Dorman MF (2004) Performance of subjects fit with the advanced bionics CII and nucleus 3G cochlear implant devices. Arch Otolaryngol Head Neck Surg 130:624–628

    Article  PubMed  Google Scholar 

  • Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, Corfas G (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24(40):8651–8661

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Corfas G, Liberman MC (2005) Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol 6(2):136–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Taylor RR, Jagger DJ, Forge A (2012) Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea. PLoS One 7:e30577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Toesca A (1996) Central and peripheral myelin in the rat cochlear and vestibular nerves. Neurosci Lett 221:21–24

    Article  CAS  PubMed  Google Scholar 

  • Webster DB (1992) Degeneration followed by partial regeneration of the organ of Corti in deafness (dn/dn) mice. Exp Neurol 115:27–31

    Article  CAS  PubMed  Google Scholar 

  • Webster M, Webster DB (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res 212:17–30

    Article  CAS  PubMed  Google Scholar 

  • White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987

    Article  CAS  PubMed  Google Scholar 

  • Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34:461–475

    Article  CAS  PubMed  Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    Article  CAS  PubMed  Google Scholar 

  • Zhai S, Shi L, Wang BE, Zheng G, Song W, Hu Y, Gao WQ (2005) Isolation and culture of hair cell progenitors from postnatal rat cochleae. J Neurobiol 65:282–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Medical Research Council (MRC), EU (FP7) and Action on Hearing Loss (AoHL) to MR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo N. Rivolta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jongkamonwiwat, N., Abbas, L., Barrott, D., Boddy, S.L., Mallick, A.S., Rivolta, M.N. (2016). The Development of a Stem Cell Therapy for Deafness. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28293-0_11

Download citation

Publish with us

Policies and ethics