Skip to main content

Chemotherapy for Urogenital Tuberculosis

  • Chapter
  • First Online:
  • 397 Accesses

Abstract

The first anti-tuberculosis drug streptomycin was created in 1945. Before this time the therapy for TB was based on diet and fresh air. Un-controlled using of antibiotics provoked development of drug resistant strains, so the history of urogenital TB can be divided into three periods: before antibiotics (AB), AB era and novo-days – MDR period. Mtb is drug-resistance, which may be: mono – Mtb are resistant to one of any antituberculous drugs; poly – Mtb are resistant to more than one of any drugs used for the treatment of the disease, excluding isoniazid and rifampicin simultaneously; multi-drug resistance (MDR) – Mtb are resistant to at least isoniazid and rifampicin, with or without resistance to other first-line drugs. Extensively drug-resistant TB (XDR-TB) refers to resistance to at least isoniazid and rifampicin, and to any fluoroquinolone, and to any of the three second-line injectables (amikacin, capreomycin and kanamycin). Persistence excluded an old specific for UGTB symptom – aseptic pyuria. Mtb hurts tissue and fades in persistence – for example, because the patient takes drugs for “UTI”. Damaged tissues are rapidly colonized by E.Coli – and now co-morbidity of UGTB and non-specific UTI enriches 75 %.

WHO notes that five drugs are currently regarded as essential in the management of TB – isoniazid, rifampicin, pyrazinamide, streptomycin and ethambutol. Thioacetaxone is also widely used to supplement isoniazid in many developing countries because of its low cost. Other drugs, including para-aminosalicylic acid (PAS), kanamycin, cycloserine, capreomycin, viomycin and ethionamide, can be of value in treating patients with MDR, but, in general, are more expensive and more toxic.

Possibilities of chemotherapy may be limited by different side effects. Usually a patient with TB has at least one more disease, and co-morbidity demands to take into account potential drug interaction, which may lead both to increasing and decreasing therapeutic effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Blair HA, Scott LJ (2015) Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs 75(1):91–100. doi:10.1007/s40265-014-0331-4

    Article  PubMed  Google Scholar 

  • Chepuri Nagaraj R, Kandi S, Sreenivas A, Oeltmann J, Satyanarayana S, Sachdeva KS, Motta Shamrao S (2013) A qualitative study to understand reasons for loss to follow-up during treatment for drug-resistant tuberculosis under programme conditions, Andhra Pradesh. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 101

    Google Scholar 

  • Chien J-Y, Lu MC, Chang YC, Ruiming H (2013) Hua-Lien Hospital, Department of Health, Executive Yuan, Hualien, Taiwan, outcome of rifabutin replacing intolerable rifampicin during anti-tuberculosis treatment. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 156

    Google Scholar 

  • Claasens M, Yang B, Dunbar R, Beyers N (2013) What determines initial loss to follow-up in tuberculosis patients at primary health care facilities in South Africa? Int J Tuberc Lung Dis 17(12 (suppl 2)):s 159

    Google Scholar 

  • Daynes G (1974) Drug-induced heart failure in advanced pulmonary tuberculosis. S Afr Med J 48(57):2352–2353

    CAS  PubMed  Google Scholar 

  • de Souza AF, de Oliveira e Silva A, Baldi J, de Souza TN, Rizzo PM (1996) Hepatic functional changes induced by the combined use of isoniazid, pyrazinamide and rifampicin in the treatment of pulmonary tuberculosis. Arq Gastroenterol 33(4):194–200

    PubMed  Google Scholar 

  • Devarbhavi H (2011) Antituberculous drug-induced liver injury: current perspective. Trop Gastroenterol 32(3):167–174

    PubMed  Google Scholar 

  • Devarbhavi H, Singh R, Patil M, Sheth K, Adarsh CK, Balaraju G (2013) Outcome and determinants of mortality in 269 patients with combination anti-tuberculosis drug-induced liver injury. J Gastroenterol Hepatol 28(1):161–167. doi:10.1111/j.1440-1746.2012.07279.x

    Article  CAS  PubMed  Google Scholar 

  • Dhingra VK, Rajpal S, Aggarwal N, Aggarwaln JK, Shadab K, Jain SK (2004) Adverse drug reactions observed during DOTS. J Commun Dis 36(4):251–259

    CAS  PubMed  Google Scholar 

  • Erokhin VV, Demikhova O, Bocharova IV, Severin ES, Barseghyan GG (2013) Preclinical trials of anti-tuberculosis drugs based on nanotechnology. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 100

    Google Scholar 

  • Grosset JH, Singer TG, Bishai WR (2012) New drugs for the treatment of tuberculosis: hope and reality. Int J Tuberc Lung Dis 16(8):1005–1014. doi:10.5588/ijtld.12.0277

    Article  CAS  PubMed  Google Scholar 

  • Jindani A, Harherill M, Charalambous S, Mingofa S, Zizhou S, Van Dijk J, Shepherd J, Philips P (2013) Results of the Rifaquin study. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 26

    Google Scholar 

  • Kho VK, Chan PH (2012) Isolated tuberculous epididymitis presenting as a painless scrotal tumor. J Chin Med Assoc 75(6):292–295. doi:10.1016/j.jcma.2012.04.014.Epub2012May31

    Article  PubMed  Google Scholar 

  • Kisonga R, Taksdal M, Kyariga N, Mleoh L (2013) The role of nutrition during MDR-TB patient’s treatment. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 19

    Google Scholar 

  • Koizumi C, Suetomi T, Matsuoka T. et al (2014) Regional difference in cancer detection rate in prostate cancer screening by a local municipality in Japan. Prostate Int 2(1):19–25. doi:10.12954/PI.13035. [Epub 2014 Mar 30]

    Google Scholar 

  • Kolpakova TA, Kolpakov MA, Bashkirova IV, Rachkovskaia LN, Burylin SI, Liubarskiĭ MS (2001) Effects of the enterosorbent SUMS-1 on isoniazid pharmacokinetics and lipid peroxidation in patients with pulmonary tuberculosis and drug-induced hepatic lesions. Probl Tuberk 3:34–36

    PubMed  Google Scholar 

  • Kombe R, Kapalata N (2013) Food prescription: experiences from food supplements in TB-HIV treatment in Temeke. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 19

    Google Scholar 

  • Kresyun V, Filyuk V, Antonenko P, Rogach K, Danilenko Y, Mozolevich G (2013) Level of isoniazid metabolites in tuberculosis patients depending on acetylation genotype. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 158

    Google Scholar 

  • Kul’chavenia EV, Kuznetsov PV (1998) Complications of polychemotherapy for renal tuberculosis. Probl Tuberk 1:28–30

    PubMed  Google Scholar 

  • Kulchavenya EV, Krasnov VA (2010) Selected issue of phthysiourology (Monograph). – Novosibirsk. “Nauka” (“Science”) – ISBN 978-5-02-023313-3

    Google Scholar 

  • Kwon OJ, Zhang L, Ittmann MM, Xin L (2014) Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci U S A 111(5):E592–E600. doi:10.1073/pnas.1318157111. Epub 2013 Dec 23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Layer P, Engelhardm M (1986) Tuberculostatics-induced systemic lupus erythematosus. Dtsch Med Wochenschr 111(42):1603–1605

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Goldstein AS (2014) Inflammation promotes prostate differentiation. Proc Natl Acad Sci U S A 111(5):1666–1667. doi:10.1073/pnas.1323181111. Epub 2014 Jan 23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López Barón E, Gómez-Arbeláez D, Díaz-Pérez JA (2009) Primary prostatic tuberculosis. Case report and bibliographic review. Arch Esp Urol 62(4):309–313

    Article  PubMed  Google Scholar 

  • Mirtskhulaya V, Lomtadze N, Kipiani M, Kavtaradze M, Salakaia A (2013) Factors associated with default from tuberculosis treatment in the country of Georgia: a case control study. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 159

    Google Scholar 

  • Mitchison DA (2003) Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis 7(3):304

    Google Scholar 

  • Mitchison D, Davies G (2012) The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16(6):724–732. doi:10.5588/ijtld.12.0083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Modongo C, Kesenogile B, Ncube R, Zetola N (2013) Effectiveness and toxicity of aminoglycoside use fro MDR-TB treatment: a matter of dead or deaf? Int J Tuberc Lung Dis 17(12 (suppl 2)):s 160

    Google Scholar 

  • Mor Z, Cedar N, Leventhal A, Shuldiner J (2013) Are patients who recovered from tuberculosis still at risk of premature death? Results of a 10-year follow-up of all Israeli patients. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 98

    Google Scholar 

  • Narang RK, Agarwal MC, Raina AK, Singh SN, Bihari K, Sharma SN (1983) Hyperuricaemia induced by ethambutol. Br J Dis Chest 77(4):403–406

    Article  CAS  PubMed  Google Scholar 

  • Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC (2014) Novel drugs against tuberculosis: a clinician’s perspective. Eur Respir J, pii:erj01623-2014

    Google Scholar 

  • Pereira RM, Tresoldi AT, Hessel G (2000) Isoniazid-induced hepatic failure. Report of a case. Arq Gastroenterol 37(1):72–75

    Article  CAS  PubMed  Google Scholar 

  • Peto HM, Pratt RH, Harrington TA, LoBue PA, Armstrong LR (2009) Epidemiology of extrapulmonary tuberculosis in the United States, 1993–2006. Clin Infect Dis 49(9):1350–1357

    Google Scholar 

  • Riva MA (2014) From milk to rifampicin and back again: history of failures and successes in the treatment for tuberculosis. J Antibiot Tokyo 67(9):661–665. doi:10.1038/ja.2014.108. Epub 2014 Aug 6

    Article  CAS  PubMed  Google Scholar 

  • Saifullah B, El Zowalaty M, Arulselvan P, Fakurazi S, Webster T, Geilich M, Hussein MZ (2014) Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites. Drug Des Devel Ther 8:1029–1036. doi:10.2147/DDDT.S63753. Published online Jul 28, 2014

    PubMed Central  PubMed  Google Scholar 

  • Sandhu JS (2008) Prostate cancer and chronic prostatitis. Curr Urol Rep 9(4):328–332

    Article  PubMed  Google Scholar 

  • Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, Bernardo J, Venkataramanan R, Sterling TR (2006) An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 174(8):935–952

    Article  CAS  PubMed  Google Scholar 

  • Shean K, Upadhya D, van der Walt M (2013) Prevalence and severity of adverse reactions to clofazimine on the Western Cape province of South Africa. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 262

    Google Scholar 

  • Shutskaia EI, Priakhina VN, Kolpakova TA, Kurilovich GM (1991) Drug-induced nephropathy in patients with tuberculosis of the lungs. Probl Tuberk 4:48–49

    PubMed  Google Scholar 

  • Siddiqui MA, Khan IA (2002) Isoniazid-induced lupus erythematosus presenting with cardiac tamponade. Am J Ther 9(2):163–165

    Article  PubMed  Google Scholar 

  • Silberstein T, Silberstein E, Saphier O (2013) Lycopene and tomatoes–their effect on prevention of prostatic cancer. Harefuah 152(8):461–463, 499

    PubMed  Google Scholar 

  • Simons BW, Durham NM, Bruno TC et al (2015) A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol 235(3):478–489. doi: 10.1002/path.4472

    Google Scholar 

  • Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B, Tsenova L, Kurepina N, Chen J, Zolezzi F, Kreiswirth B, Poidinger M, Chee C, Kaplan G, Wang YT, De Libero G (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159. doi:10.1126/scitranslmed.3009885

    Article  PubMed  Google Scholar 

  • Solangi GA, Zuberi BF, Shaikh S, Shaikh WM (2004) Pyrazinamide induced hyperuricemia in patients taking anti-tuberculous therapy. J Coll Physicians Surg Pak 14(3):136–138

    PubMed  Google Scholar 

  • Svensson EM, Murray S, Karlsson MO, Dooley KE (2014) Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother. pii:dku504

    Google Scholar 

  • Tang S, Hao X, Yao L, Liu Y, Sun H, Gu J (2013a) Clofazimine for the treatment of multidrug-resistant tuberculosis: a multicenter, randomized controlled study. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 155

    Google Scholar 

  • Tang S, Yao L, Hao X, Liu Y, Sun H, Gu J (2013b) Linezolid for the treatment of extensively drug-resistant tuberculosis: a multicenter, randomized controlled study. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 160

    Google Scholar 

  • Thee S, Garcia-Prats A, Draper HR, Mcllleron H, Meredith S, Wiesner L, Hesseling A, Schaaf HS (2013) Pharmacokinetics of ofloxacin and levofloxacin in children with multi-drug resistant tuberculosis. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 255

    Google Scholar 

  • van der Werf MJ, Langendam MW, Huitric E (2013) Role of adherence to tuberculosis treatment guidelines to prevent the development of drug resistance. Int J Tuberc Lung Dis 17(12 (suppl 2)):s 41

    Google Scholar 

  • Vilaplana C, Cardona PJ (2013) Could the common anti-inflammatories be the new coadjuvant treatment against tuberculosis? Int J Tuberc Lung Dis 17(12 (suppl 2)):s 157

    Google Scholar 

  • Vishnevskyi BI, Steklova LN (2008) Frequency and structure of drug resistance of M. tuberculosis in different localizations of the disease. Probl tuberculeza i bolezn legkih 12:5–8

    Google Scholar 

  • WHO (1991) WHO model prescribing information: drugs used in mycobacterial diseases. WHO, Geneva

    Google Scholar 

  • WHO (2013) WHO model list of essential medicines. World Health Organization. http://apps.who.int/iris/bitstream/10665/93142/1/EML_18_eng.pdf?ua=1

  • WHO (2013) Countdown to 2015; Global Tuberculosis Report 2013, Supplement 2013. WHO/HTM/TB/2013.13. WHO, Geneva

    Google Scholar 

  • WHO Fact sheet N°104, Reviewed March 2014, available on http://www.who.int/mediacentre/factsheets/fs104/en/

  • Zierski M, Bek E (1980) Side effects of various combinations of rifampin and isoniazid with ethambutol or streptomycin and pyrazinamide in short-term chemotherapy of newly-detected pulmonary tuberculosis. Pneumonol Pol 48(7):469–479

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kulchavenya, E. (2016). Chemotherapy for Urogenital Tuberculosis. In: Current Therapy and Surgery for Urogenital Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-319-28290-9_4

Download citation

Publish with us

Policies and ethics