Skip to main content

Recent Progress in Strategies for Adenovirus Mediated Therapeutic Cell Targeting

  • Chapter
  • First Online:
  • 706 Accesses

Abstract

Increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Many clinical trials using virus-derived delivery systems are devoted to combat cancer, to correct single-gene malfunctions or to regenerate tissues. To develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions, remains a major challenge. The most widely used vector systems to transduce cells are based on adenoviruses. Recent approaches to develop selective adenoviral vectors (Ad) that exclusively target cells or tissues of interest without interfering with all others have focused on the modification of the broad natural tropism of adenoviruses. A popular way of Ad targeting is attained by directing vector particles towards distinct cellular receptors. Retargeting can be accomplished by linking custom-made peptides with unique specificity and reasonable affinity to cellular surface protein moieties via genetic alteration, chemical coupling or bridging with dual-specific adaptor molecules. Ideally, target-specific vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in the native environment and should enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to target specifically adenovirus-derived gene delivery vector systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadvand D, Rahbarizadeh F, Moghimi SM (2011) Biological targeting and innovative therapeutic interventions with phage-displayed peptides and structured nucleic acids (aptamers). Curr Opin Biotechnol 22:832–838

    Article  CAS  PubMed  Google Scholar 

  • Alemany R, Curiel DT (2001) CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 8:1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Alemany R, Suzuki K, Curiel DT (2000) Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81:2605–2609

    Article  CAS  PubMed  Google Scholar 

  • Araki K, Yamashita T, Reddy N, Wang H, Abuzeid WM, Khan K, O’Malley BW Jr, Li D (2010) Molecular disruption of NBS1 with targeted gene delivery enhances chemosensitisation in head and neck cancer. Br J Cancer 103:1822–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  CAS  PubMed  Google Scholar 

  • Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardo-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127

    Article  CAS  PubMed  Google Scholar 

  • Armendariz-Borunda J, Bastidas-Ramirez BE, Sandoval-Rodriguez A, Gonzalez-Cuevas J, Gomez-Meda B, Garcia-Banuelos J (2011) Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration. J Biosci Bioeng 112:415–421

    Article  CAS  PubMed  Google Scholar 

  • Arnberg N (2009) Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 19:165–178

    Article  CAS  PubMed  Google Scholar 

  • Barry MA, Dower WJ, Johnston SA (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 2:299–305

    Article  CAS  PubMed  Google Scholar 

  • Bauerschmitz GJ, Barker SD, Hemminki A (2002) Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 21:1161–1174

    CAS  PubMed  Google Scholar 

  • Bayo-Puxan N, Gimenez-Alejandre M, Lavilla-Alonso S, Gros A, Cascallo M, Hemminki A, Alemany R (2009) Replacement of adenovirus type 5 fiber shaft heparan sulfate proteoglycan-binding domain with RGD for improved tumor infectivity and targeting. Hum Gene Ther 20:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Beatty MS, Curiel DT (2012) Adenovirus strategies for tissue-specific targeting. Adv Cancer Res 115:39–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr M, Kaufmann JK, Ketzer P, Engelhardt S, Mück-Häusl M, Okun PM, Petersen G, Neipel F, Hassel JC, Ehrhardt A, Enk AH, Nettelbeck DM (2014) Adenoviruses using the cancer marker EphA2 as a receptor in vitro and in vivo by genetic ligand insertion into different capsid scaffolds. PLoS One 9:e95723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V (2002) Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 76:8621–8631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL, Aldrich WA, Banerjee PT, Gillies SD, Curiel DT, Krasnykh V (2003) Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 77:11367–11377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergelson JM, Modlin JF, Wieland-Alter W, Cunningham JA, Crowell RL, Finberg RW (1997) Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J Infect Dis 175:697–700

    Article  CAS  PubMed  Google Scholar 

  • Berk AJ (2013) Adenoviridae. In: Knipe DM, Howley PM (eds) Field’s virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1704–1731

    Google Scholar 

  • Best J, Manka P, Syn WK, Dolle L, van Grunsven LA, Canbay A (2015) Role of liver progenitors in liver regeneration. Hepatobiliary Surg Nutr 4:48–58

    PubMed  PubMed Central  Google Scholar 

  • Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583

    Article  CAS  PubMed  Google Scholar 

  • Bignone PA, Krupa RA, Sternberg H, Funk WD, Snyder EY, West MD, Larocca D (2013) Identification of human embryonic progenitor cell targeting peptides using phage display. PLoS One 8:e58200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böckmann M, Drosten M, Pützer BM (2005a) Discovery of targeting peptides for selective therapy of medullary thyroid carcinoma. J Gene Med 7:179–188

    Article  PubMed  CAS  Google Scholar 

  • Böckmann M, Hilken G, Schmidt A, Cranston AN, Tannapfel A, Drosten M, Frilling A, Ponder BA, Pützer BM (2005b) Novel SRESPHP peptide mediates specific binding to primary medullary thyroid carcinoma after systemic injection. Hum Gene Ther 16:1267–1275

    Article  PubMed  Google Scholar 

  • Cao C, Dong X, Wu X, Wen B, Ji G, Cheng L, Liu H (2012) Conserved fiber-penton base interaction revealed by nearly atomic resolution cryo-electron microscopy of the structure of adenovirus provides insight into receptor interaction. J Virol 86:12322–12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chailertvanitkul VA, Pouton CW (2010) Adenovirus: a blueprint for non-viral gene delivery. Curr Opin Biotechnol 21:627–632

    Article  CAS  PubMed  Google Scholar 

  • Chang DK, Chiu CY, Kuo SY, Lin WC, Lo A, Wang YP, Li PC, Wu HC (2009) Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors. J Biol Chem 284:12905–12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, May SM, Barry MA (2010) Targeting adenoviruses with factor x-single-chain antibody fusion proteins. Hum Gene Ther 21:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung CS, Lui JC, Baron J (2013) Identification of chondrocyte-binding peptides by phage display. J Orthop Res 31:1053–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan L, Vallath S, Saha A, Flak M, McNeish IA, Vassaux G, Marshall JF, Hart IR, Thomas GJ (2009) In vivo retargeting of adenovirus type 5 to αvβ6 integrin results in reduced hepatotoxicity and improved tumor uptake following systemic delivery. J Virol 83:6416–6428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan L, Alba R, Parker AL, Bradshaw AC, McNeish IA, Nicklin SA, Baker AH (2010) Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2:2290–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan L, Vallath S, Gros A, Gimenez-Alejandre M, van Rooijen N, Thomas GJ, Baker AH, Cascallo M, Alemany R, Hart IR (2012) Combined fiber modifications both to target αvβ6 and detarget the coxsackievirus-adenovirus receptor improve virus toxicity profiles in vivo but fail to improve antitumoral efficacy relative to adenovirus serotype 5. Hum Gene Ther 23:960–979

    Article  CAS  PubMed  Google Scholar 

  • Croyle MA, Chirmule N, Zhang Y, Wilson JM (2002) PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther 13:1887–1900

    Article  CAS  PubMed  Google Scholar 

  • Croyle MA, Callahan SM, Auricchio A, Schumer G, Linse KD, Wilson JM, Brunner LJ, Kobinger GP (2004) PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. J Virol 78:912–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crystal RG (2014) Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 25:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupelli K, Stehle T (2011) Viral attachment strategies: the many faces of adenoviruses. Curr Opin Virol 1:84–91

    Article  CAS  PubMed  Google Scholar 

  • Curiel DT (1999) Strategies to adapt adenoviral vectors for targeted delivery. Ann N Y Acad Sci 886:158–171

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Menezes ME, Bhatia S, Wang X-Y, Emdad L, Sarkar D, Fisher PB (2015) Gene therapies for cancer: strategies, challenges and successes. J Cell Physiol 230:259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison AJ, Benko M, Harrach B (2003) Genetic content and evolution of adenoviruses. J Gen Virol 84:2895–2908

    Article  CAS  PubMed  Google Scholar 

  • Deming TJ (1997) Facile synthesis of block copolypeptides of defined architecture. Nature 390:386–389

    Article  CAS  PubMed  Google Scholar 

  • Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:3196–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K, Escutenaire S, Kanerva A, Pesonen S, Löskog A, Cerullo V, Hemminki A (2012) Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther 19:988–998

    Article  CAS  PubMed  Google Scholar 

  • Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, Yang K, Setubal JC, Pasqualini R, Arap W (2009) Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 4:e8338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, Curiel DT (1998) An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 72:9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT (2000) Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 74:6875–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorer DE, Nettelbeck DM (2009) Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 61:554–571

    Article  CAS  PubMed  Google Scholar 

  • Doronin K, Flatt JW, di Paolo NC, Khare R, Kalyuzhniy O, Acchione M, Sumida JP, Ohto U, Shimizu T, Akashi-Takamura S, Miyake K, MacDonald JW, Bammler TK, Beyer RP, Farin FM, Stewart PL, Shayakhmetov DM (2012) Coagulation factor X activates innate immunity to human species C adenovirus. Science 338:795–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas JT (2004) Adenovirus-mediated gene delivery to skeletal muscle. Methods Mol Biol 246:29–35

    CAS  PubMed  Google Scholar 

  • Douglas JT, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V, Curiel DT (1999) A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 17:470–475

    Article  CAS  PubMed  Google Scholar 

  • Dreier B, Mikheeva G, Belousova N, Parizek P, Boczek E, Jelesarov I, Forrer P, Plückthun A, Krasnykh V (2011) Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. J Mol Biol 405:410–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreier B, Honegger A, Hess C, Nagy-Davidescu G, Mittl PR, Grütter MG, Belousova N, Mikheeva G, Krasnykh V, Plückthun A (2013) Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc Natl Acad Sci U S A 110:E869–E877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drosten M, Pützer BM (2006) Mechanisms of disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy. Nat Clin Pract Oncol 3:564–574

    Article  CAS  PubMed  Google Scholar 

  • Duffy MR, Parker AL, Kalkman ER, White K, Kovalskyy D, Kelly SM, Baker AH (2013) Identification of novel small molecule inhibitors of adenovirus gene transfer using a high throughput screening approach. J Control Release 170:132–140

    Article  CAS  PubMed  Google Scholar 

  • Echeverria I, Pereboev A, Silva L, Zabaleta A, Riezu-Boj JI, Bes M, Cubero M, Borras-Cuesta F, Lasarte JJ, Esteban JI, Prieto J, Sarobe P (2011) Enhanced T cell responses against hepatitis C virus by ex vivo targeting of adenoviral particles to dendritic cells. Hepatology 54:28–37

    Article  CAS  PubMed  Google Scholar 

  • Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I, Wickham TJ (2001) Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 75:11284–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkon KB, Liu CC, Gall JG, Trevejo J, Marino MW, Abrahamsen KA, Song X, Zhou JL, Old LJ, Crystal RG, Falck-Pedersen E (1997) Tumor necrosis factor α plays a central role in immune-mediated clearance of adenoviral vectors. Proc Natl Acad Sci U S A 94:9814–9819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essler M, Ruoslahti E (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci U S A 99:2252–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eto Y, Gao JQ, Sekiguchi F, Kurachi S, Katayama K, Mizuguchi H, Hayakawa T, Tsutsumi Y, Mayumi T, Nakagawa S (2004) Neutralizing antibody evasion ability of adenovirus vector induced by the bioconjugation of methoxypolyethylene glycol succinimidyl propionate (MPEG-SPA). Biol Pharm Bull 27:936–938

    Article  CAS  PubMed  Google Scholar 

  • Eto Y, Gao JQ, Sekiguchi F, Kurachi S, Katayama K, Maeda M, Kawasaki K, Mizuguchi H, Hayakawa T, Tsutsumi Y, Mayumi T, Nakagawa S (2005) PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J Gene Med 7:604–612

    Article  CAS  PubMed  Google Scholar 

  • Eto Y, Yoshioka Y, Ishida T, Yao X, Morishige T, Narimatsu S, Mizuguchi H, Mukai Y, Okada N, Kiwada H, Nakagawa S (2010) Optimized PEGylated adenovirus vector reduces the anti-vector humoral immune response against adenovirus and induces a therapeutic effect against metastatic lung cancer. Biol Pharm Bull 33:1540–1544

    Article  CAS  PubMed  Google Scholar 

  • Everts M, Curiel DT (2004) Transductional targeting of adenoviral cancer gene therapy. Curr Gene Ther 4:337–346

    Article  CAS  PubMed  Google Scholar 

  • Gao JQ, Eto Y, Yoshioka Y, Sekiguchi F, Kurachi S, Morishige T, Yao X, Watanabe H, Asavatanabodee R, Sakurai F, Mizuguchi H, Okada Y, Mukai Y, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S (2007) Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J Control Release 122:102–110

    Article  CAS  PubMed  Google Scholar 

  • Glasgow JN, Kremer EJ, Hemminki A, Siegal GP, Douglas JT, Curiel DT (2004) An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 324:103–116

    Article  CAS  PubMed  Google Scholar 

  • Glasgow JN, Everts M, Curiel DT (2006) Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 13:830–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237–268

    CAS  PubMed  Google Scholar 

  • Haisma HJ, Grill J, Curiel DT, Hoogeland S, van Beusechem VW, Pinedo HM, Gerritsen WR (2000) Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther 7:901–904

    Article  CAS  PubMed  Google Scholar 

  • Haisma HJ, Boesjes M, Beerens AM, van der Strate BW, Curiel DT, Plüddemann A, Gordon S, Bellu AR (2009) Scavenger receptor A: a new route for adenovirus 5. Mol Pharm 6:366–374

    Article  CAS  PubMed  Google Scholar 

  • Haisma HJ, Kamps GK, Bouma A, Geel TM, Rots MG, Kariath A, Bellu AR (2010) Selective targeting of adenovirus to αvβ3 integrins, VEGFR2 and Tie2 endothelial receptors by angio-adenobodies. Int J Pharm 391:155–161

    Article  CAS  PubMed  Google Scholar 

  • Haj-Ahmad Y, Graham FL (1986) Development of a helper-independent human adenovirus vector and its use in the transfer of the Herpes simplex thymidine kinase gene. J Virol 57:267–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hangalapura BN, Timares L, Oosterhoff D, Scheper RJ, Curiel DT, de Gruijl TD (2012) CD40-targeted adenoviral cancer vaccines: the long and winding road to the clinic. J Gene Med 14:416–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Kohri K, Akita H, Mitani K, Ikeda K, Nakanishi M (1997) Efficient transfer of genes into senescent cells by adenovirus vectors via highly expressed αvβ5 integrin. Biochem Biophys Res Commun 240:88–92

    Article  CAS  PubMed  Google Scholar 

  • Havenga MJ, Lemckert AA, Ophorst OJ, van Meijer M, Germeraad WT, Grimbergen J, van den Doel MA, Vogels R, van Deutekom J, Janson AA, de Bruijn JD, Uytdehaag F, Quax PH, Logtenberg T, Mehtali M, Bout A (2002) Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 76:4612–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedley SJ, Auf der Maur A, Hohn S, Escher D, Barberis A, Glasgow JN, Douglas JT, Korokhov N, Curiel DT (2006) An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Ther 13:88–94

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, Barnes MN, Alvarez RD, Curiel DT (2002) In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst 94:741–749

    Article  CAS  PubMed  Google Scholar 

  • Hesse A, Kosmides D, Kontermann RE, Nettelbeck DM (2007) Tropism modification of adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 41 short-fiber knob domain. J Virol 81:2688–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofherr SE, Shashkova EV, Weaver EA, Khare R, Barry MA (2008) Modification of adenoviral vectors with polyethylene glycol modulates in vivo tissue tropism and gene expression. Mol Ther 16:1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Zhang K (2013) The application of aptamers in cancer research: an up-to-date review. Future Oncol 9:369–376

    Article  CAS  PubMed  Google Scholar 

  • Ivanenkov VV, Felici F, Menon AG (1999) Targeted delivery of multivalent phage display vectors into mammalian cells. Biochim Biophys Acta 1448:463–472

    Article  CAS  PubMed  Google Scholar 

  • Jakubczak JL, Rollence ML, Stewart DA, Jafari JD, Von Seggern DJ, Nemerow GR, Stevenson SC, Hallenbeck PL (2001) Adenovirus type 5 viral particles pseudotyped with mutagenized fiber proteins show diminished infectivity of coxsackie B-adenovirus receptor-bearing cells. J Virol 75:2972–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZK, Koh SB, Sato M, Atanasov IC, Johnson M, Zhou ZH, Deming TJ, Wu L (2013) Engineering polypeptide coatings to augment gene transduction and in vivo stability of adenoviruses. J Control Release 166:75–85

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gomez-Manzano C, Rivera-Molina Y, Lang FF, Conrad CA, Fueyo J (2015) Oncolytic adenovirus research evolution: from cell-cycle checkpoints to immune checkpoints. Curr Opin Virol 13:33–39

    Article  CAS  PubMed  Google Scholar 

  • Jose A, Rovira-Rigau M, Luna J, Gimenez-Alejandre M, Vaquero E, Garcia de la Torre B, Andreu D, Alemany R, Fillat C (2014) A genetic fiber modification to achieve matrix-metalloprotease-activated infectivity of oncolytic adenovirus. J Control Release 192:148–156

    Article  CAS  PubMed  Google Scholar 

  • Kaliberov SA, Kaliberova LN, Buchsbaum DJ, Curiel DT (2014a) Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus. Cancer Gene Ther 21:264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaliberov SA, Kaliberova LN, Buggio M, Tremblay JM, Shoemaker CB, Curiel DT (2014b) Adenoviral targeting using genetically incorporated camelid single variable domains. Lab Invest 94:893–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda Y, Tsutsumi Y, Yoshioka Y, Kamada H, Yamamoto Y, Kodaira H, Tsunoda S, Okamoto T, Mukai Y, Shibata H, Nakagawa S, Mayumi T (2004) The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials 25:3259–3266

    Article  CAS  PubMed  Google Scholar 

  • Kashentseva EA, Seki T, Curiel DT, Dmitriev IP (2002) Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 62:609–616

    CAS  PubMed  Google Scholar 

  • Katayama K, Furuki R, Yokoyama H, Kaneko M, Tachibana M, Yoshida I, Nagase H, Tanaka K, Sakurai F, Mizuguchi H, Nakagawa S, Nakanishi T (2011) Enhanced in vivo gene transfer into the placenta using RGD fiber-mutant adenovirus vector. Biomaterials 32:4185–4193

    Article  CAS  PubMed  Google Scholar 

  • Khare R, Chen CY, Weaver EA, Barry MA (2011) Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 11:241–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kim YJ, Lee JM, Han SH, Ko HJ, Park HJ, Pereboev A, Nguyen HH, Kang CY (2010) CD40-targeted recombinant adenovirus significantly enhances the efficacy of antitumor vaccines based on dendritic cells and B cells. Hum Gene Ther 21:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Kim PH, Sohn JH, Choi JW, Jung Y, Kim SW, Haam S, Yun CO (2011) Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin. Biomaterials 32:2314–2326

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T (2003) Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and αv integrin-binding ablation. J Virol 77:13062–13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT (1998) Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 72:1844–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreppel F, Kochanek S (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 16:16–29

    Article  CAS  PubMed  Google Scholar 

  • Kügler J, Zantow J, Meyer T, Hust M (2013) Oligopeptide m13 phage display in pathogen research. Viruses 5:2531–2545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuldo JM, Asgeirsdottir SA, Zwiers PJ, Bellu AR, Rots MG, Schalk JA, Ogawara KI, Trautwein C, Banas B, Haisma HJ, Molema G, Kamps JA (2013) Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo. J Control Release 166:57–65

    Article  CAS  PubMed  Google Scholar 

  • Kurachi S, Koizumi N, Sakurai F, Kawabata K, Sakurai H, Nakagawa S, Hayakawa T, Mizuguchi H (2007) Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the fiber knob, protein IX, or hexon. Gene Ther 14:266–274

    Article  CAS  PubMed  Google Scholar 

  • Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8:751–755

    CAS  PubMed  Google Scholar 

  • Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, Wadsworth S, O’Riordan C (2003) Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 8:99–107

    Article  CAS  PubMed  Google Scholar 

  • Lee GK, Maheshri N, Kaspar B, Schaffer DV (2005) PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng 92:24–34

    Article  CAS  PubMed  Google Scholar 

  • Leissner P, Legrand V, Schlesinger Y, Hadj DA, van Raaij M, Cusack S, Pavirani A, Mehtali M (2001) Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther 8:49–57

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wu K (2008) Peptides homing to tumor vasculature: imaging and therapeutics for cancer. Recent Pat Anticancer Drug Discov 3:202–208

    Article  CAS  PubMed  Google Scholar 

  • Magnusson MK, Hong SS, Henning P, Boulanger P, Lindholm L (2002) Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 4:356–370

    Article  CAS  PubMed  Google Scholar 

  • Magnusson MK, Henning P, Myhre S, Wikman M, Uil TG, Friedman M, Andersson KME, Hong SS, Hoeben RC, Habib NA, Stahl S, Boulanger P, Lindholm L (2007) Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther 14:468–479

    Article  CAS  PubMed  Google Scholar 

  • Magnusson MK, Kraaij R, Leadley RM, de Ridder CM, van Weerden WM, van Schie KA, van der Kroeg M, Hoeben RC, Maitland NJ, Lindholm L (2012) A transductionally retargeted adenoviral vector for virotherapy of Her2/neu-expressing prostate cancer. Hum Gene Ther 23:70–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlknecht G, Sela M, Yarden Y (2015) Aptamer targeting the ERBB2 receptor tyrosine kinase for applications in tumor therapy. Methods Mol Biol 1317:3–15

    Article  PubMed  Google Scholar 

  • Matsui H, Sakurai F, Katayama K, Kurachi S, Tashiro K, Sugio K, Kawabata K, Mizuguchi H (2011) Enhanced transduction efficiency of fiber-substituted adenovirus vectors by the incorporation of RGD peptides in two distinct regions of the adenovirus serotype 35 fiber knob. Virus Res 155:48–54

    Article  CAS  PubMed  Google Scholar 

  • Mazzucchelli L, Burritt JB, Jesaitis AJ, Nusrat A, Liang TW, Gewirtz AT, Schnell FJ, Parkos CA (1999) Cell-specific peptide binding by human neutrophils. Blood 93:1738–1748

    CAS  PubMed  Google Scholar 

  • McConnell MJ, Imperiale MJ (2004) Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15:1022–1033

    Article  CAS  PubMed  Google Scholar 

  • Miura Y, Yoshida K, Nishimoto T, Hatanaka K, Ohnami S, Asaka M, Douglas JT, Curiel DT, Yoshida T, Aoki K (2007) Direct selection of targeted adenovirus vectors by random peptide display on the fiber knob. Gene Ther 14:1448–1460

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi H, Hayakawa T (2004) Targeted adenovirus vectors. Hum Gene Ther 15:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA, Hayakawa T (2001) A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther 8:730–735

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi H, Koizumi N, Hosono T, Ishii-Watabe A, Uchida E, Utoguchi N, Watanabe Y, Hayakawa T (2002) CAR- or αv integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Ther 9:769–776

    Article  CAS  PubMed  Google Scholar 

  • Mok H, Palmer DJ, Ng P, Barry MA (2005) Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 11:66–79

    Article  CAS  PubMed  Google Scholar 

  • Morral N, O’Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Cordova E, Carey KD, Beaudet al, Langston C (2002) Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 13:143–154

    Google Scholar 

  • Myhre S, Henning P, Friedman M, Stahl S, Lindholm L, Magnusson MK (2009) Re-targeted adenovirus vectors with dual specificity; binding specificities conferred by two different Affibody molecules in the fiber. Gene Ther 16:252–261

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Sato K, Hamada H (2003) Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J Virol 77:2512–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nettelbeck DM, Miller DW, Jerome V, Zuzarte M, Watkins SJ, Hawkins RE, Müller R, Kontermann RE (2001) Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther 3:882–891

    Article  CAS  PubMed  Google Scholar 

  • Nettelbeck DM, Rivera AA, Kupsch J, Dieckmann D, Douglas JT, Kontermann RE, Alemany R, Curiel DT (2004) Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int J Cancer 108:136–145

    Article  CAS  PubMed  Google Scholar 

  • Nicklin SA, White SJ, Watkins SJ, Hawkins RE, Baker AH (2000) Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 102:231–237

    Article  CAS  PubMed  Google Scholar 

  • Nicklin SA, Dishart KL, Buening H, Reynolds PN, Hallek M, Nemerow GR, Von Seggern DJ, Baker AH (2003) Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. Cancer Lett 201:165–173

    Article  CAS  PubMed  Google Scholar 

  • Nigatu AS, Vupputuri S, Flynn N, Ramsey JD (2015) Effects of cell-penetrating peptides on transduction efficiency of PEGylated adenovirus. Biomed Pharmacother 71:153–160

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto T, Yoshida K, Miura Y, Kobayashi A, Hara H, Ohnami S, Kurisu K, Yoshida T, Aoki K (2009) Oncolytic virus therapy for pancreatic cancer using the adenovirus library displaying random peptides on the fiber knob. Gene Ther 16:669–680

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto T, Yamamoto Y, Yoshida K, Goto N, Ohnami S, Aoki K (2012) Development of peritoneal tumor-targeting vector by in vivo screening with a random peptide-displaying adenovirus library. PLoS One 7:e45550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill AM, Smith AN, Spangler EA, Whitley EM, Schleis SE, Bird RC, Curiel DT, Thacker EE, Smith BF (2011) Resistance of canine lymphoma cells to adenoviral infection due to reduced cell surface RGD binding integrins. Cancer Biol Ther 11:651–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, Francis GE (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358

    Article  PubMed  Google Scholar 

  • Odermatt A, Audige A, Frick C, Vogt B, Frey BM, Frey FJ, Mazzucchelli L (2001) Identification of receptor ligands by screening phage-display peptide libraries ex vivo on microdissected kidney tubules. J Am Soc Nephrol 12:308–316

    CAS  PubMed  Google Scholar 

  • Ogawara K, Rots MG, Kok RJ, Moorlag HE, van Loenen AM, Meijer DK, Haisma HJ, Molema G (2004) A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum Gene Ther 15:433–443

    Article  CAS  PubMed  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  CAS  PubMed  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereboev AV, Nagle JM, Shakhmatov MA, Triozzi PL, Matthews QL, Kawakami Y, Curiel DT, Blackwell JL (2004) Enhanced gene transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. Mol Ther 9:712–720

    Article  CAS  PubMed  Google Scholar 

  • Pereboeva L, Komarova S, Mahasreshti P, Curiel DT (2004) Fiber-mosaic adenovirus as a novel approach to design genetically modified adenoviral vectors. Virus Res 105:35–46

    Article  CAS  PubMed  Google Scholar 

  • Pereboeva L, Komarova S, Roth J, Ponnazhagan S, Curiel DT (2007) Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus. Gene Ther 14:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo P, Annunziata P, Mithbaokar P, Brunetti-Pierri N (2014) SR-A and SREC-I binding peptides increase HDAd-mediated liver transduction. Gene Ther 21:950–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L (2014) Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 3:e28694

    Article  PubMed  PubMed Central  Google Scholar 

  • Pützer BM, Hitt M, Muller WJ, Emtage P, Gauldie J, Graham FL (1997) Interleukin 12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression. Proc Natl Acad Sci U S A 94:10889–10894

    Article  PubMed  PubMed Central  Google Scholar 

  • Rancourt C, Rogers BE, Sosnowski BA, Wang M, Piche A, Pierce GF, Alvarez RD, Siegal GP, Douglas JT, Curiel DT (1998) Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin Cancer Res 4:2455–2461

    CAS  PubMed  Google Scholar 

  • Rangel R, Guzman-Rojas L, le Roux LG, Staquicini FI, Hosoya H, Barbu EM, Ozawa MG, Nie J, Dunner K Jr, Langley RR, Sage EH, Koivunen E, Gelovani JG, Lobb RR, Sidman RL, Pasqualini R, Arap W (2012) Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun 3:788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rangel R, Dobroff AS, Guzman-Rojas L, Salmeron CC, Gelovani JG, Sidman RL, Pasqualini R, Arap W (2013) Targeting mammalian organelles with internalizing phage (iPhage) libraries. Nat Protoc 8:1916–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauschhuber C, Noske N, Ehrhardt A (2012) New insights into stability of recombinant adenovirus vector genomes in mammalian cells. Eur J Cell Biol 91:2–9

    Article  CAS  PubMed  Google Scholar 

  • Ravera MW, Carcamo J, Brissette R, Alam-Moghe A, Dedova O, Cheng W, Hsiao KC, Klebanov D, Shen H, Tang P, Blume A, Mandecki W (1998) Identification of an allosteric binding site on the transcription factor p53 using a phage-displayed peptide library. Oncogene 16:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Reetz J, Genz B, Meier C, Kowtharapu BS, Timm F, Vollmar B, Herchenröder O, Abshagen K, Pützer BM (2013) Development of adenoviral delivery systems to target hepatic stellate cells in vivo. PLoS One 8:e67091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reetz J, Hildebrandt S, Schmidt A, Meier C, Herchenröder O, Gläser A, Witt M, Pützer BM, Wree A (2015) Novel subventricular zone early progenitor cell-specific adenovirus for in vivo therapy of central nervous system disorders reinforces brain stem cell heterogeneity. Brain Struct Funct. doi:10.1007/s00429-015-1025-8

    Google Scholar 

  • Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ, Wang MH, Miletich DJ, Grizzle WE, Douglas JT, Danilov SM, Curiel DT (2000) A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2:562–578

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV, Baker AH, Danilov SM, Curiel DT (2001) Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 19:838–842

    Article  CAS  PubMed  Google Scholar 

  • Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72:7909–7915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Rojas JJ, Gimenez-Alejandre M, Gil-Hoyos R, Cascallo M, Alemany R (2012) Improved systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft HSG-binding domain with RGD. Gene Ther 19:453–457

    Article  CAS  PubMed  Google Scholar 

  • Romanczuk H, Galer CE, Zabner J, Barsomian G, Wadsworth SC, O’Riordan CR (1999) Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum Gene Ther 10:2615–2626

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld MA, Siegfried W, Yoshimura K, Yoneyama K, Fukayama M, Stier LE, Pääkkö PK, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Jallat S, Pavirani A, Lecocq JP, Crystal RG (1991) Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo. Science 252:431–434

    Article  CAS  PubMed  Google Scholar 

  • Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84:570–573

    Article  CAS  PubMed  Google Scholar 

  • Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573–2604

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Montes AM, Hernandez-Ortega LD, Lucano-Landeros MS, Armendariz-Borunda J (2015) New gene therapy strategies for hepatic fibrosis. World J Gastroenterol 21:3813–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenröder O, Pützer BM (2014) Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 15:5893–5907

    Article  Google Scholar 

  • Schmidt A, Böckmann M, Stoll A, Racek T, Pützer BM (2005) Analysis of adenovirus gene transfer into adult neural stem cells. Virus Res 114:45–53

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Haas SJ, Hildebrandt S, Scheibe J, Eckhoff B, Racek T, Kempermann G, Wree A, Pützer BM (2007) Selective targeting of adenoviral vectors to neural precursor cells in the hippocampus of adult mice: new prospects for in situ gene therapy. Stem Cells 25:2910–2918

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Eipel C, Fürst K, Sommer N, Pahnke J, Pützer BM (2011) Evaluation of systemic targeting of RET oncogene-based MTC with tumor-selective peptide-tagged Ad vectors in clinical mouse models. Gene Ther 18:418–423

    Article  CAS  PubMed  Google Scholar 

  • Sclavons C, Burtea C, Boutry S, Laurent S, Vander Elst L, Muller RN (2013) Phage display screening for tumor necrosis factor-α-binding peptides: detection of inflammation in a mouse model of hepatitis. Int J Pept 2013:348409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    Article  CAS  PubMed  Google Scholar 

  • Seto D, Chodosh J, Brister JR, Jones MS (2011) Members of the adenovirus research community. Using the whole-genome sequence to characterize and name human adenoviruses. J Virol 85:5701–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seung-Min L, Gil-Suk Y, Eun-Sang Y, Tae-Gyun K, In-San K, Byung-Heon L (2009) Application of phage display to discovery of tumor-specific homing peptides: Developing strategies for therapy and molecular imaging of cancer. Methods Mol Biol 512:355–363

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Li X, Bangari DS, Mittal SK (2009) Adenovirus receptors and their implications in gene delivery. Virus Res 143:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shayakhmetov DM, Li Z-Y, Ni S, Lieber A (2004) Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 78:5368–5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shayakhmetov DM, Gaggar A, Ni S, Li Z-Y, Lieber A (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79:7478–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M, King L, Mech C, Dinges L, Iverson WO, Sherer AD, Markovits JE, Lyons RM, Kaleko M, Stevenson SC (2003a) Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 14:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K, Nemerow GR, Kaleko M, Stevenson SC (2003b) Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 14:777–787

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors (Basel) 12:612–631

    Article  Google Scholar 

  • Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N, Lieber A (2004) A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 9:496–509

    Article  CAS  PubMed  Google Scholar 

  • Stone D, Liu Y, Shayakhmetov D, Li Z-Y, Ni S, Lieber A (2007) Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 81:8466–8471

    Google Scholar 

  • Sundaram P, Kurniawan H, Byrne ME, Wower J (2013) Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 48:259–271

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Ueno H, Pei XH, Nakanishi Y, Yatsunami J, Hara N (1998) The levels of integrin αvβ5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells. Gene Ther 5:361–368

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kuroki M, Hamada H, Kato K, Kinugasa T, Shibaguchi H, Zhao J (2007) Cancer-targeting gene therapy using tropism-modified adenovirus. Anticancer Res 27:3679–3684

    CAS  PubMed  Google Scholar 

  • Terao S, Acharya B, Suzuki T, Aoi T, Naoe M, Hamada K, Mizuguchi H, Gotoh A (2009) Improved gene transfer into renal carcinoma cells using adenovirus vector containing RGD motif. Anticancer Res 29:2997–3001

    CAS  PubMed  Google Scholar 

  • Thacker EE, Timares L, Matthews QL (2009a) Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 8:761–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker EE, Nakayama M, Smith BF, Bird RC, Muminova Z, Strong TV, Timares L, Korokhov N, O’Neill AM, de Gruijl TD, Glasgow JN, Tani K, Curiel DT (2009b) A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine 27:7116–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res 60:5456–5463

    CAS  PubMed  Google Scholar 

  • van Beusechem VW, van Rijswijk AL, van Es HH, Haisma HJ, Pinedo HM, Gerritsen WR (2000) Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 7:1940–1946

    Article  PubMed  CAS  Google Scholar 

  • van Zeeburg HJ, van Beusechem VW, Huizenga A, Haisma HJ, Korokhov N, Gibbs S, Leemans CR, Brakenhoff RH (2010) Adenovirus retargeting to surface expressed antigens on oral mucosa. J Gene Med 12:365–376

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786:126–138

    CAS  PubMed  Google Scholar 

  • Wang D, Liu S, Mao Q, Zhao J, Xia H (2011) A novel vector for a rapid generation of fiber-mutant adenovirus based on one step ligation and quick screening of positive clones. J Biotechnol 152:72–76

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Song YL, Zhu Z, Li XL, Zou Y, Yang HT, Wang JJ, Yao PS, Pan RJ, Yang CJ, Kang DZ (2014) Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem Biophys Res Commun 453:681–685

    Article  CAS  PubMed  Google Scholar 

  • Watkins SJ, Mesyanzhinov VV, Kurochkina LP, Hawkins RE (1997) The ‘adenobody’ approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther 4:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • White SJ, Nicklin SA, Sawamura T, Baker AH (2001) Identification of peptides that target the endothelial cell-specific LOX-1 receptor. Hypertension 37:449–455

    Article  CAS  PubMed  Google Scholar 

  • Wickham TJ (2000) Targeting adenovirus. Gene Ther 7:110–114

    Article  CAS  PubMed  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73:309–319

    Article  CAS  PubMed  Google Scholar 

  • Wickham TJ, Tzeng E, Shears LL 2nd, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A, Kovesdi I (1997) Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 71:8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams BJ, Bhatia S, Adams LK, Boling S, Carroll JL, Li XL, Rogers DL, Korokhov N, Kovesdi I, Pereboev AV, Curiel DT, Mathis JM (2012) Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector. PLoS One 7:e46981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525:162–169

    Article  CAS  PubMed  Google Scholar 

  • Wonganan P, Croyle MA (2010) PEGylated adenoviruses: from mice to monkeys. Viruses 2:468–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Work LM, Nicklin SA, Brain NJ, Dishart KL, Von Seggern DJ, Hallek M, Büning H, Baker AH (2004) Development of efficient viral vectors selective for vascular smooth muscle cells. Mol Ther 9:198–208

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T, Curiel DT (2002) Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther 13:1647–1653

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Kudrolli TA, Chowdhury WH, Liu MM, Rodriguez R, Lupold SE (2010) Adenovirus targeting to prostate-specific membrane antigen through virus-displayed, semirandom peptide library screening. Cancer Res 70:9549–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia H, Anderson B, Mao Q, Davidson BL (2000) Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 74:11359–11366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Cheng Z, Zhang X, Patel M, Wu JC, Gambhir SS, Chen X (2006) Imaging chemically modified adenovirus for targeting tumors expressing integrin αvβ3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med 47:130–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Qiu Q, Tian J, Smith JS, Conenello GM, Morita T, Byrnes AP (2013) Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med 19:452–457

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Yoshioka Y, Morishige T, Eto Y, Watanabe H, Okada Y, Mizuguchi H, Mukai Y, Okada N, Nakagawa S (2009) Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis. Gene Ther 16:1395–1404

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Yoshioka Y, Morishige T, Eto Y, Narimatsu S, Kawai Y, Mizuguchi H, Gao JQ, Mukai Y, Okada N, Nakagawa S (2011) Tumor vascular targeted delivery of polymer-conjugated adenovirus vector for cancer gene therapy. Mol Ther 19:1619–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao XL, Yoshioka Y, Ruan GX, Chen YZ, Mizuguchi H, Mukai Y, Okada N, Gao JQ, Nakagawa S (2012) Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy. Biomacromolecules 13:2402–2409

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Jin C, Leja J, Majdalani N, Nilsson B, Eriksson F, Essand M (2011) Adenovirus with hexon Tat-protein transduction domain modification exhibits increased therapeutic effect in experimental neuroblastoma and neuroendocrine tumors. J Virol 85:13114–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Jin C, Ramachandran M, Xu J, Nilsson B, Korsgren O, le Blanc K, Uhrbom L, Forsberg-Nilsson K, Westermark B, Adamson R, Maitland N, Fan X, Essand M (2013) Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures. PLoS One 8:e54952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA (2002) Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76:4580–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bergelson JM (2005) Adenovirus receptors. J Virol 79:12125–12131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W (2012) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem Commun (Camb) 48:10472–10480

    Article  CAS  Google Scholar 

  • Zimbres FM, Tarnok A, Ulrich H, Wrenger C (2013) Aptamers: novel molecules as diagnostic markers in bacterial and viral infections? Biomed Res Int 2013:731516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to all those colleagues whose important work is not cited because of space constraints. The results of this review article were in part supported by grants from the Deutsche Forschungsgemeinschaft (DFG), the Bundesministerium für Bildung und Forschung (BMBF), the Exzellenzförderprogramm (EFP) Mecklenburg-Vorpommern, and the FORUN (Forschungsförderung der Medizinischen Fakultät der Rostocker Universität) grant program.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte M. Pützer M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herchenröder, O., Reetz, J., Pützer, B.M. (2016). Recent Progress in Strategies for Adenovirus Mediated Therapeutic Cell Targeting. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28274-9_2

Download citation

Publish with us

Policies and ethics