Skip to main content

Dynamic Configuration of Differential Evolution Control Parameters and Operators

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

Abstract

Differential evolution has shown success in solving different optimization problems. However, its performance depends on the control parameters and search operators. Different from existing approaches, in this paper, a new framework which dynamically configures the appropriate choices of operators and parameters is introduced, in which the success of a search operator is linked to the proper combination of control parameters (scaling factor and crossover rate). Also, an adaptation of the population size is adopted. The performance of the proposed algorithm is assessed using a well-known set of constrained problems with the experimental results demonstrating that it is superior to state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis, L., et al.: Handbook of Genetic Algorithms, vol. 115. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  2. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  4. Feng, L., Yang, Y.-F., Wang, Y.-X.: A new approach to adapting control parameters in differential evolution algorithm. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 21–30. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput. Oper. Res. 38(12), 1877–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Self-adaptive differential evolution incorporating a heuristic mixing of operators. Comput. Optim. Appl. 54(3), 771–790 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zamuda, A., Brest, J.: Population reduction differential evolution with multiple mutation strategies in real world industry challenges. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 154–161. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Brest, J., Boskovic, B., Zamuda, A., Fister, I., Mezura-Montes, E.: Real parameter single objective optimization using self-adaptive differential evolution algorithm with more strategies. In: IEEE Congress on Evolutionary Computation (CEC), pp. 377–383. IEEE (2013)

    Google Scholar 

  9. Tvrdík, J., Polakova, R.: Competitive differential evolution for constrained problems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  10. Sarker, R., Elsayed, S., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)

    Article  Google Scholar 

  11. Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 14(4), 561–579 (2010)

    Article  Google Scholar 

  12. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9(6), 448–462 (2005)

    Article  MATH  Google Scholar 

  13. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  14. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  15. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the cec 2010 competition on constrained real-parameter optimization. Technical report, Nanyang Technological University, Singapore (2010)

    Google Scholar 

  16. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)

    Google Scholar 

  17. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  18. Tanabe, R., Fukunaga, A.: Improving the search performance of shade using linear population size reduction. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665, July 2014

    Google Scholar 

  19. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

    Article  MATH  Google Scholar 

  20. Mezura Montes, E., Coello Coello, C.A.: Adding a diversity mechanism to a simple evolution strategy to solve constrained optimization problems. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 6–13. IEEE (2003)

    Google Scholar 

  21. Gong, W., Cai, Z., Liang, D.: Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE Trans. Cybern. 45(4), 716–727 (2015)

    Article  Google Scholar 

  22. Takahama, T., Sakai, S.: Constrained optimization by the \(\varepsilon \) constrained differential evolution with an archive and gradient-based mutation. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2010)

    Google Scholar 

Download references

Acknowledgment

This work was supported by an Australian Research Council Discovery Project (Grant# DP150102583) awarded to A/Prof. Ruhul Sarker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Mohammed Elsayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Elsayed, S.M., Sarker, R. (2016). Dynamic Configuration of Differential Evolution Control Parameters and Operators . In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics