Abstract
Differential evolution has shown success in solving different optimization problems. However, its performance depends on the control parameters and search operators. Different from existing approaches, in this paper, a new framework which dynamically configures the appropriate choices of operators and parameters is introduced, in which the success of a search operator is linked to the proper combination of control parameters (scaling factor and crossover rate). Also, an adaptation of the population size is adopted. The performance of the proposed algorithm is assessed using a well-known set of constrained problems with the experimental results demonstrating that it is superior to state-of-the-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Davis, L., et al.: Handbook of Genetic Algorithms, vol. 115. Van Nostrand Reinhold, New York (1991)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput. 11(1), 1–18 (2003)
Feng, L., Yang, Y.-F., Wang, Y.-X.: A new approach to adapting control parameters in differential evolution algorithm. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 21–30. Springer, Heidelberg (2008)
Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Comput. Oper. Res. 38(12), 1877–1896 (2011)
Elsayed, S.M., Sarker, R.A., Essam, D.L.: Self-adaptive differential evolution incorporating a heuristic mixing of operators. Comput. Optim. Appl. 54(3), 771–790 (2013)
Zamuda, A., Brest, J.: Population reduction differential evolution with multiple mutation strategies in real world industry challenges. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 154–161. Springer, Heidelberg (2012)
Brest, J., Boskovic, B., Zamuda, A., Fister, I., Mezura-Montes, E.: Real parameter single objective optimization using self-adaptive differential evolution algorithm with more strategies. In: IEEE Congress on Evolutionary Computation (CEC), pp. 377–383. IEEE (2013)
TvrdÃk, J., Polakova, R.: Competitive differential evolution for constrained problems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
Sarker, R., Elsayed, S., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)
Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 14(4), 561–579 (2010)
Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9(6), 448–462 (2005)
Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)
Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the cec 2010 competition on constrained real-parameter optimization. Technical report, Nanyang Technological University, Singapore (2010)
Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Tanabe, R., Fukunaga, A.: Improving the search performance of shade using linear population size reduction. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665, July 2014
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)
Mezura Montes, E., Coello Coello, C.A.: Adding a diversity mechanism to a simple evolution strategy to solve constrained optimization problems. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 6–13. IEEE (2003)
Gong, W., Cai, Z., Liang, D.: Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE Trans. Cybern. 45(4), 716–727 (2015)
Takahama, T., Sakai, S.: Constrained optimization by the \(\varepsilon \) constrained differential evolution with an archive and gradient-based mutation. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2010)
Acknowledgment
This work was supported by an Australian Research Council Discovery Project (Grant# DP150102583) awarded to A/Prof. Ruhul Sarker.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Elsayed, S.M., Sarker, R. (2016). Dynamic Configuration of Differential Evolution Control Parameters and Operators . In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-28270-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28269-5
Online ISBN: 978-3-319-28270-1
eBook Packages: Computer ScienceComputer Science (R0)