Skip to main content

A Delaunay Triangulation Based Density Measurement for Evolutionary Multi-objective Optimization

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

Abstract

Diversity preservation is a critical issue in evolutionary multi-objective optimization algorithms (MOEAs), it has significant influence on the quality of final solution set. In this wok, a crowding density measurement is developed for preserving diversity in MOEAs by using the Delaunay triangulation mesh built on the population in the objective space. Base on the property of the Delaunay triangulation, the new density measurement considers both the Euclidean distance and the relative position between individuals, and thus provide a more accurate estimation of the density around a specific individual within the population. Experimental results indicate that the suggested density measurement help to improve the performance of MOEAs significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K.: Multi-objective optimization. Search methodologies, pp. 403–449. Springer, US (2014)

    Google Scholar 

  2. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1, 32–49 (2011)

    Article  Google Scholar 

  3. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100. L. Erlbaum Associates Inc. (1985)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization Evolutionary methods for design, optimisation, and control, pp. 95–100. CIMNE, Barcelona Spain (2002)

    Google Scholar 

  6. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  7. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Chen, B., Lin, Y., Zeng, W., Zhang, D., Si, Y.-W.: Modified differential evolution algorithm using a new diversity maintenance strategy for multi-objective optimization problems. Appl. Intell. 43, 49–73 (2015)

    Article  Google Scholar 

  9. Li, X.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14, 150–169 (2010)

    Article  Google Scholar 

  10. Kim, H., Liou, M.-S.: New fitness sharing approach for multi-objective genetic algorithms. J. Global Optim. 55, 579–595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biao, L., Jinhua, Z., Jiongliang, X., Jun, W.: Dynamic crowding distance? A new diversity maintenance strategy for MOEAs. In: Fourth International Conference on Natural Computation, ICNC 2008, pp. 580–585 (2008)

    Google Scholar 

  12. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8, 149–172 (2000)

    Article  Google Scholar 

  13. Tahernezhad, K., Lari, K.B., Hamzeh, A., Hashemi, S.: A multi-objective evolutionary algorithm based on complete-linkage clustering to enhance the solution space diversity. In: 2012 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP), pp. 128–133. IEEE (2012)

    Google Scholar 

  14. Tan, K.C., Goh, C.K., Mamun, A., Ei, E.: An evolutionary artificial immune system for multi-objective optimization. Eur. J. Oper. Res. 187, 371–392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pires, E.J.S., Machado, J.A.T., de Moura Oliveira, P.B.: Entropy diversity in multi-objective particle swarm optimization. Entropy 15, 5475–5491 (2013)

    Article  Google Scholar 

  16. Kukkonen, S., Deb, K.: A fast and effective method for pruning of non-dominated solutions in many-objective problems. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 553–562. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inform. Sci. 9, 219–242 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dwyer, R.A.: A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 2, 137–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  20. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22, 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 825–830 (2002)

    Google Scholar 

  22. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multiobjective test problem toolkit. In: Proceedings of the International Conference on Multi-Criterion Optimization, pp. 280–294 (2005)

    Google Scholar 

  23. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Qi, Y., Yin, M., Li, X. (2016). A Delaunay Triangulation Based Density Measurement for Evolutionary Multi-objective Optimization. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics