Skip to main content

Nutrition for Extreme Sports

  • 2635 Accesses

Abstract

It has been well established that sound nutrition can accelerate recovery, enhance adaptations to training and improve performance. Competing in extreme sports places stress on the body, and conducting activities in extreme environments can exacerbate the physiological stress on the competitor. The physiological and metabolic requirements of different extreme sports vary greatly; thus nutritional requirements across the various extreme sports are diverse. Typically, for extreme sports that are longer in duration such as mountaineering, adventure racing, ultra-endurance activities and expedition-type events, the energy demands are much greater, and thus competitors should plan their dietary needs in advance. An inadequate diet and poor fuelling strategies can impair performance and increase the risk of injury and illness during events.

This chapter discussed the various requirements across sports depending on the desired goal. Evidence-based weight management is discussed, and practical guidelines are summarised for athletes who want to manipulate body composition. Nutritional challenges, such as eating during travel, hydration and extreme weather conditions and cooling are discussed as well as some practical guidelines that athletes can put into practice to overcome some of these issues.

Certain nutritional supplements such as creatine and beta-alanine can be beneficial for enhancing performance is certain extreme sports that involve repetitive explosive movements. Carbohydrate supplements and dietary nitrates may be beneficial for endurance-based activities such as adventure racing, ironman triathlons and cross-country skiing. The strategic use of caffeine supplementation may be beneficial for most extreme sports and in particular for extreme sports that are characterised by very long distances where athletes often choose to go without sleep for a period of greater than 24 h; while competing in events such as expeditions, caffeine can be used by competitors to help them stay awake and enhance performance.

Keywords

  • Nutritional recommendations
  • Kcal
  • Extreme conditions
  • Glycaemic index
  • Body composition
  • Adventure
  • Supplements
  • Creatine
  • Hydration
  • Hypertonicity
  • Hyponatraemia
  • Vitamins

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-28265-7_2
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-28265-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  1. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7):669–77.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22(1):15–30.

    PubMed  CrossRef  Google Scholar 

  3. O’Reilly J, Wong SH, Chen Y. Glycaemic index, glycaemic load and exercise performance. Sports Med. 2010;40(1):27–39.

    PubMed  CrossRef  Google Scholar 

  4. Blom PC, Hostmark AT, Vaage O, Kardel KR, Maehlum S. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerci. 1987;19(5):491–6.

    CAS  CrossRef  Google Scholar 

  5. Rodriguez NR, Dimarco NM, Langley S. American Dietetic Association, Dietitians of Canada and American College of Sports Medicine: nutrition and athletic performance. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.

    PubMed  CrossRef  Google Scholar 

  6. Burke LM, Cox GR, Cummings NK, Desbrow B. Guidelines for daily carbohydrate intake. Sports Med. 2001;31(4):267–99.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Tipton KD, Wolfe RR. Protein and amino acids for athletes. J Sports Sci. 2004;22(1):65–79.

    PubMed  CrossRef  Google Scholar 

  8. Tarnopolsky M. Protein requirements for endurance athletes. Nutrition. 2004;20(7):662–8.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):197–206.

    Google Scholar 

  10. Koopman R, Saris WH, Wagenmakers AJ, Van Loon LJ. Nutritional interventions to promote post-exercise muscle protein synthesis. Sports Med. 2007;37(10):895–906.

    PubMed  CrossRef  Google Scholar 

  11. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(5):1049–57.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Breen L, Phillips SM. Nutrient interaction for optimal protein anabolism in resistance exercise. Curr Opin Clin Nutr Metab Care. 2012;15(3):226–32.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78(2):250–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Phillips SM. The science of muscle hypertrophy: making dietary protein count. Proceedings Nutr Society. 2011;70(01):100–3.

    CAS  CrossRef  Google Scholar 

  15. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Phillips SM, Van Loon LJ. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29 Suppl 1:29–38.

    CrossRef  Google Scholar 

  17. Murphy CH, Hector AJ, Phillips SM. Considerations for protein intake in managing weight loss in athletes. Euro J of Sport Sci. 2014:1–8. [Ahead-of-Print].

    Google Scholar 

  18. Helms ER, Zinn C, Rowlands DS, Brown SR. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. Int J Sport Nutr Exerc Metab. 2014;24(2):127–38.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Josse AR, Atkinson SA, Tarnopolsky MA, Phillips SM. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr. 2011;141(9):1626–34.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Ranchordas MK. Nutrition for Adventure Racing. Sports Med. 2012;42(11):915–27.

    PubMed  Google Scholar 

  21. Ranchordas MK, Rogerson D, Ruddock A, Killer S, Winter EM. Nutrition for tennis: practical recommendations. J Sport Sci Med. 2013;12(2):211–24.

    Google Scholar 

  22. Maughan R, Noakes T. Fluid replacement and exercise stress. Sports Med. 1991;12(1):16–31.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Sawka MN, Pandolf KB. Effects of body water loss on physiological function and exercise performance. Perspectives Exerc Sci Sports Med. 1990;3:1–38.

    Google Scholar 

  24. Gopinathan P, Pichan G, Sharma V. Role of dehydration in heat stress-induced variations in mental performance. Archives Environ Health Int J. 1988;43(1):15–7.

    CAS  CrossRef  Google Scholar 

  25. Rehrer NJ, Beckers EJ, Brouns F, Ten Hoor F, Saris WH. Effects of dehydration on gastric emptying and gastrointestinal distress while running. Med Sci Sports Exerc. 1990;22(6):790–5.

    CAS  PubMed  CrossRef  Google Scholar 

  26. O’brien C, Young AJ, Sawka MN, 1. Hypohydration and thermoregulation in cold air. J Appl Physiol (Bethesda, Md: 1985). 1998;84(1):185–9.

    Google Scholar 

  27. Seifert JG, Luetkemeier MJ, White AT, Mino LM. The physiological effects of beverage ingestion during cross country ski training in elite collegiate skiers. Can J Appl Physiol. 1998;23(1):66–73.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Maughan R, Shirreffs S. Rehydration and recovery after exercise. Sci Sports. 2004;19(5):234–8.

    CrossRef  Google Scholar 

  29. Maughan RJ, Shirreffs SM. Nutrition for sports performance: issues and opportunities. Proceedings Nutr Society. 2012;71(01):112–9.

    CAS  CrossRef  Google Scholar 

  30. Costill D, Sparks K. Rapid fluid replacement for thermal dehydration. Heart. 1973;3:4.

    Google Scholar 

  31. Jeukendrup A, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2010;20(1):112–21.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Gonzalez-Alonso J, Heaps C, Coyle E. Rehydration after exercise with common beverages and water. Int J Sports Med. 1992;13(05):399–406.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Goulet ED, Lamontagne-Lacasse M, Gigou P, Kenefick RW, Ely BR, Cheuvront S. Pre-exercise hypohydration effects on jumping ability and muscle strength, endurance and anaerobic capacity: a meta-analysis; 1681: Board#118 June 23:30 PM-5:00 PM. Med Sci Sports Exerc. 2010;42(5):362.

    CrossRef  Google Scholar 

  34. Gigou P, Lamontagne-Lacasse M, Goulet ED. Meta-analysis of the effects of pre-exercise hypohydration on endurance performance, lactate threshold and Vo2 max: 1679: Board# 116 June 23:30 PM-5:00 PM. Med Sci Sports Exerc. 2010;42(5):361–2.

    CrossRef  Google Scholar 

  35. Latzka WA, Sawka MN, Montain SJ, Skrinar GS, Fielding RA, Matott RP, Pandolf KB, 6. Hyperhydration: tolerance and cardiovascular effects during uncompensable exercise-heat stress. J Appl Physiol (Bethesda, Md: 1985). 1998;84(6):1858–64.

    CAS  Google Scholar 

  36. Latzka WA, Sawka MN, Montain SJ, Skrinar GS, Fielding RA, Matott RP, Pandolf KB. Hyperhydration: thermoregulatory effects during compensable exercise-heat stress. J Appl Physiol (Bethesda, Md: 1985). 1997;83(3):860–6.

    CAS  Google Scholar 

  37. O’brien C, Freund BJ, Young AJ, Sawka MN. Glycerol hyperhydration: physiological responses during cold-air exposure. J Appl Physiol (Bethesda, Md: 1985). 2005;99(2):515–21.

    CrossRef  Google Scholar 

  38. Freund BJ, Montain SJ, Deluca JP, Pandolf KB, Valeri CR. Glycerol hyperhydration: hormonal, renal, and vascular fluid responses. J Appl Physiol. 1995;79:2069–77.

    CAS  PubMed  Google Scholar 

  39. Montain SJ, Cheuvront SN, Sawka MN. Exercise associated hyponatraemia: quantitative analysis to understand the aetiology. Br J Sports Med. 2006;40(2):98–105.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, Cooke M, Earnest CP, Greenwood M, Kalman DS. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7(7):2–43.

    Google Scholar 

  41. Marino FE. Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med. 2002;36(2):89–94.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Tucker R, Marle T, Lambert EV, Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol. 2006;574(3):905–15.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Cheung SS, Mclellan TM, 5. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol (Bethesda, Md: 1985). 1998;84:1731–9.

    CAS  Google Scholar 

  44. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B, 3. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (Bethesda, Md: 1985). 1999;86(3):1032–9.

    CAS  Google Scholar 

  45. Cheung SS. Hyperthermia and voluntary exhaustion: integrating models and future challenges. Appl Physiol Nutr Metab. 2007;32(4):808–17.

    PubMed  CrossRef  Google Scholar 

  46. Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240–9.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev. 1999;27(1):167–218.

    CAS  PubMed  Google Scholar 

  48. Serwah N, Marino F. The combined effects of hydration and exercise heat stress on choice reaction time. J Sci Med Sport. 2006;9(1):157–64.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Marino FE, Mbambo Z, Kortekaas E, Wilson G, Lambert MI, Noakes TD, Dennis SC. Advantages of smaller body mass during distance running in warm, humid environments. Pflugers Arch. 2000;441(2–3):359–67.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Lee J, Shirreffs SM, Maughan RJ. Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc. 2008;40(9):1637–44.

    PubMed  CrossRef  Google Scholar 

  51. Siegel R, Mate J, Brearley MB, Watson G, Nosaka K, Laursen PB. Ice slurry ingestion increases core temperature capacity and running time in the heat. Med Sci Sports Exerc. 2010;42(4):717–25.

    PubMed  CrossRef  Google Scholar 

  52. Siegel R, Maté J, Watson G, Nosaka K, Laursen PB. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J Sports Sci. 2012;30(2):155–65.

    PubMed  CrossRef  Google Scholar 

  53. Burdon CA, Hoon MW, Johnson NA, Chapman PG, O’connor HT. The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. Int J Sport Nutr Exerc Metab. 2013;23:458–69.

    PubMed  CrossRef  Google Scholar 

  54. Ihsan M, Landers G, Brearley M, Peeling P. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int J Sports Physiol Perform. 2010;5(2):140–51.

    PubMed  CrossRef  Google Scholar 

  55. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1-2):89–94.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Volek JS, Rawson ES. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition. 2004;20(7-8):609–14.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39(2):321–33.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–33.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Harris RC, Tallon MJ, Dunnett M, Boobis LH, Coackley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–89.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Bate-Smith EC. The Buffering of muscle in rigour: protein, phosphate and carnosine. J Physiol. 1938;92:336–43.

    CrossRef  Google Scholar 

  61. Hobson RM, Saunders B, Ball G, Harris R, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43(1):25–37.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Pan J, Hamm J, Hetherington H, Rothman D, Shulman R. Correlation of lactate and pH in human skeletal muscle after exercise by 1H NMR. Magn Reson Med. 1991;20(1):57–65.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Begum G, Cuncliffe A, Leveritt M. Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab. 2005;15(5):493.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Vanthienen R, Vanproeyen K, Vanden-Eynde B, Puype K, Lefere T, Hespel P. β-alanine improves sprint performance in endurance cycling. Med Sci Sport Exerc. 2009;41:898–903.

    CAS  CrossRef  Google Scholar 

  65. Stellingwerff T, Decombaz J, Harris RC, Boesch C. Optimizing human in vivo dosing and delivery of β-alanine supplements for muscle carnosine synthesis. Amino Acids. 2012;43(1):57–65.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Bescos R, Sureda A, Tur JA, Pons A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012;42(2):99–117.

    PubMed  CrossRef  Google Scholar 

  67. Jones AM. Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review. Appl Physiol Nutr Metab. 2014;39(9):1019–28.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Kelly J, Vanhatalo A, Bailey SJ, Wylie LJ, Tucker C, List S, Winyard PG, Jones AM. Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am J Physiol Regul Integr Comp Physiol. 2014;307(7):920–30.

    CrossRef  Google Scholar 

  69. Pasman W, Van Baak M, Jeukendrup A, De Haan A. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med. 1995;16(4):225–30.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Bridge C, Jones M. The effect of caffeine ingestion on 8 km run performance in a field setting. J Sports Sci. 2006;24(4):433–9.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Burke L. Practical Sports Nutrition. Leeds: Human Kinetics; 2007.

    Google Scholar 

  72. Scott JPR, Mcnaughton L. Sleep deprivation, energy expenditure and cardiorespiratory function. Int J Sports Med. 2004;25(6):421–6.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Mclellan TM, Kamimori GH, Bell DG, Smith IF, Johnson D, Belenky G. Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation. Aviat Space Environ Med. 2005;76(1):39–45.

    CAS  PubMed  Google Scholar 

  74. Mclellan TM, Kamimori GH, Voss DM, Bell DG, Cole KG, Johnson D. Caffeine maintains vigilance and improves run times during night operations for special forces. Aviat Space Environ Med. 2005;76(7I):647–54.

    CAS  PubMed  Google Scholar 

  75. Campbell C, Prince D, Braun M, Applegate E, Casazza GA. Carbohydrate-supplement form and exercise performance. Int J Sport Nutr Exerc Metab. 2008;18(2):179–90.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Saunders MJ, Luden ND, Herrick JE. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res. 2007;21(3):678–84.

    PubMed  Google Scholar 

  77. Burke LM, Wood C, Pyne DB, Telford DR, Saunders PU. Effect of carbohydrate intake on half-marathon performance of well-trained runners. Int J Sport Nutr Exerc Metab. 2005;15(6):573–89.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Currell K, Urch J, Cerri E, Jentjens RLP, Blannin AK, Jeukendrup AE. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl Physiol Nutr Metab. 2008;33(6):1067–72.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Triplett D, Doyle JA, Rupp JC, Benardot D. An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exer Metab. 2010;20(2):122–31.

    CAS  CrossRef  Google Scholar 

  81. De Hon O, Coumans B. The continuing story of nutritional supplements and doping infractions. Br J Sports Med. 2007;41:800–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  82. Maughan RJ. Contamination of dietary supplements and positive drug tests in sport. J Sports Sci. 2005;23:883–9.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur K. Ranchordas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ranchordas, M.K., Hudson, S., Thompson, S.W. (2017). Nutrition for Extreme Sports. In: Feletti, F. (eds) Extreme Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28265-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28265-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28263-3

  • Online ISBN: 978-3-319-28265-7

  • eBook Packages: MedicineMedicine (R0)