Skip to main content

Changing Trends of Biomass and Carbon Pools in Mediterranean Pine Forests

  • Chapter
  • First Online:
Managing Forest Ecosystems: The Challenge of Climate Change

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 34))

  • 1498 Accesses

Abstract

The amount of biomass in forest ecosystems is critical information for global carbon cycle modelling. Determination of forest function as a sink or source of carbon is likewise relevant for both scientific applications and policy formulation. The quantity and function of forest biomass in the global carbon cycle is dynamic and changes as a result of natural and anthropogenic processes. This dynamism necessitates monitoring capacity that enables the characterization of changes in forest biomass over time and space. By combining field inventory and remotely sensed data, it is possible to characterize the quantity of biomass for a single date, or to characterize trends in quantity and function of forest biomass through time. Field inventory data provides accurate information for calibration of spatially extensive remotely sensed data models and for model validation as well. Historical, repeat measures of the same field plots facilitate the estimation of temporal trends in biomass accrual or removal, as well as carbon pooling processes. Remotely sensed data enable the inference of trends over large areas, and historical data archives can support retrospective analyses and the establishment of a baseline for future monitoring efforts. This chapter describes some of the opportunities provided by synergies between field measures and remotely sensed data for biomass and carbon assessment over large areas, and describes a case study in the Mediterranean pines of Spain, in which biomass and carbon pooling for the period 1984 to 2009 are estimated with a time series of Landsat imagery supported with data from the Spanish National Forest Inventory.

Synergistic assessment with Landsat time series and forest inventory data in the Spanish Central Range

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson K, Evans TP, Richards KR (2009) National forest carbon inventories: policy needs and assessment capacity. Clim Chang 93:69–101

    Article  CAS  Google Scholar 

  • Baccini A, Friedl MA, Woodcock CE, Warbington R (2004) Forest biomass estimation over regional scales using multisource data. Geophys Res Lett, 31, L10501, doi:10.1029/2004GL019782

    Google Scholar 

  • Baccini A, Friedl MA, Woodcock CE, Zhu Z (2007) Scaling field data to calibrate and validate moderate spatial resolution remote sensing models. Photogramm Eng Remote Sens 73:945–954

    Article  Google Scholar 

  • Banskota A, Kayastha N, Falkowski MJ, Wulder MA, Froese RE, White JC (2014) Forest monitoring using Landsat time series data: a review. Can J Remote Sens 40:362–384

    Article  Google Scholar 

  • Barlow J, Peres CA (2004) Ecological responses to El Niño-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philos Trans R Soc 359:367–380

    Article  Google Scholar 

  • Blackard JA, Finco MV, Helmer EH, Holden GR, Hoppus ML, Jacobs DM, Lister AJ, Moisen GG, Nelson MD, Riemann R, Ruefenacht B, Slajanu D, Weyermann DL, Winterberger KC, Brandeis TJ, Czaplewski RL, McRoberts RE, Patterson PL, Tymcio RP (2008) Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ 112:1658–1677

    Article  Google Scholar 

  • Bortolot ZJ, Wynne RH (2005) Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data. IPRS J Photogramm Remote Sens 59:342–360

    Article  Google Scholar 

  • Bravo F, Osorio LF, Pando V, Del Peso C (2010) Long-term implications of traditional forest regulation methods applied to Maritime pine (Pinus pinaster Ait.) forests in central Spain: a century of management plans. iForest 3, 33–38. Available online at: http://www.sisef.it/iforest/doi.php. Accessed 10 Nov 2010

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees, vol 358. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Calama R, Montero G (2007) Cone and seed production from stone pine (Pinus pinea L.) stands in central range (Spain). Eur J For Res 126:23–35

    Article  Google Scholar 

  • Campbell JL, Kennedy RE, Cohen WB, Miller RF (2012) Assessing the carbon consequences of western juniper (Juniperus occidentalis) encroachment across Oregon, USA. Rangel Ecol Manag 5:223–231

    Article  Google Scholar 

  • Canty MJ, Nielsen AA, Schmidt M (2004) Automatic radiometric normalization of multitemporal satellite imagery. Remote Sens Environ 91:441–451

    Article  Google Scholar 

  • Chander G, Markham BL, Helder DH (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903

    Article  Google Scholar 

  • Chávez PS (1988) An improved dark object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24:459–479

    Article  Google Scholar 

  • Cohen WB, Spies T, Fiorella M (1995) Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. Int J Remote Sens 16(4):721–746

    Article  Google Scholar 

  • Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data, principles and practices, Second edn. CRC Press, Boca Raton, 177 pp

    Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596

    Article  Google Scholar 

  • Crist EP, Cicone RC (1984) A physically based transformation of Thematic Mapper data- the TM tasseled cap. IEEE Trans Geosci Remote Sens GE-22:256–263

    Article  Google Scholar 

  • Crist EP (1985) A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens Environ 17:301–306

    Article  Google Scholar 

  • Daubechies I, Guskov I, Schröder P, Sweldens W (1999) Wavelets on irregular point sets. Philos Trans R Soc A Math Phys Eng Sci 357(1760):2397–2413

    Article  Google Scholar 

  • Duane MV, Cohen WB, Campbell JL, Hudiburg T, Turner DP, Weyermann DL (2010) Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests. For Sci 56:405–416

    Google Scholar 

  • Duncanson LI, Neimann KO, Wulder MA (2010) Integration of GLAS and Landsat TM data for aboveground biomass estimation. Can J Remote Sens 36(2):129–141

    Article  Google Scholar 

  • Englhart S, Keuck V, Siegert F (2011) Aboveground biomass retrieval in tropical forests—the potential of combined X- and L-band SAR data use. Remote Sens Environ 115:1260–1271

    Article  Google Scholar 

  • FAO (2010) Global forest resources assessment. Rome, Italy. Available at www.fao.org/forestry/fra/fra2010/en/. Accessed 8 Aug, 2013

  • FAO (2013) State of the Mediterranean forests 2013. Rome, Italy. Available at: www.fao.org/docrep/017/i3226e/i3226e.pdf. Accessed 20 July, 2015

  • Frazier RJ, Coops NC, Wulder MA, Kennedy R (2014) Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS J Photogramm Remote Sens 92:137–142

    Article  Google Scholar 

  • Fuller RM, Smith GM, Devereux BJ (2003) The characterization and measurement of land cover change through remote sensing: problems in operational applications? Int J Appl Earth Obs Geoinf 4:243–253

    Article  Google Scholar 

  • Gemmell F (1995) Effects of forest cover, terrain, and scale on timber volume estimation with Thematic Mapper data in a rocky mountain site. Remote Sens Environ 51:291–305

    Article  Google Scholar 

  • Gillanders SN, Coops NC, Wulder MA, Gergel S, Nelson T (2008a) Multitemporal remote sensing of landscape dynamics and pattern change: describing natural and anthropogenic trends. Prog Phys Geogr 32:503–528

    Article  Google Scholar 

  • Gillanders SN, Coops NC, Wulder MA, Goodwin NR (2008b) Application of Landsat satellite imagery to monitor land-cover changes at the Athabasca oil sands, Alberta, Canada. Can Geogr 52:466–485

    Article  Google Scholar 

  • Giorgino T (2009) Computing and visualizing dynamic time warping alignments in R: the dtw package. J Stat Softw 31(7):1–24

    Article  Google Scholar 

  • Goetz SJ, Fiske GJ, Bunn AG (2006) Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens Environ 101:352–365

    Article  Google Scholar 

  • Goetz ST, Baccini A, Laporte NT, Johns T, Walker W, Kellndorfer J, Houghton RA, Sun M (2009) Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manag, 4(2), http://dx.doi.org/10.1186/1750-0680-4-2

  • Gómez C (2006) Estimación de volumen de P. sylvestris L. mediante imágenes Landsat y QuickBird en el Sistema Central español. DEA dissertation. Universidad de Valladolid, Spain, 32 pp

    Google Scholar 

  • Gómez C, White JC, Wulder MA (2011) Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens Environ 115:1665–1679

    Article  Google Scholar 

  • Gómez C, Wulder MA, White JC, Montes F, Delgado JA (2012) Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain. Int J Remote Sens 33(17):5546–5573

    Article  Google Scholar 

  • Gómez C, White JC, Wulder MA, Alejandro P (2014) Historical forest biomass dynamics modeled with Landsat spectral trajectories. IPRS J Photogrammetry and Remote Sensing 93:14–28

    Article  Google Scholar 

  • Gong P, Xu B (2003) Chapter 11: Remote sensing of forests over time: change types, methods, and opportunities. In: Wulder MA, Franklin SE (eds) Remote sensing of forest environments: concepts and case studies. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Goodwin NR, Coops NC, Wulder MA, Gillanders S, Schroeder TA, Nelson T (2008) Estimation of insect infestation dynamics using a temporal sequence of Landsat data. Remote Sens Environ 112:3680–3689

    Article  Google Scholar 

  • Goodwin NR, Magnussen S, Coops NC, Wulder MA (2010) Curve fitting of time series Landsat imagery for characterising a mountain pine beetle infestation disturbance. Int J Remote Sens 31(12):3263–3271

    Article  Google Scholar 

  • Goward SN, Masek JG, Cohen WB, Moisen G, Collatz GJ, Healey S, Houghton RA, Huang C, Kennedy R, Law B, Powell S, Turner D, Wulder MA (2008) Forest disturbance and North American carbon flux. Earth Obs Sys 89:105–108

    Google Scholar 

  • Hall RJ, Skakun RS, Arsenault EJ, Case BS (2006) Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manage 225:378–390

    Article  Google Scholar 

  • Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74

    Article  Google Scholar 

  • Hansen MC, Egorov A, Potapov PV, Stehman SV, Tyukavina A, Turubanova SA, Roy DP, Goetz SJ, Loveland TR, Ju J, Kommareddy A, Kovalskyy V, Forsyth C, Bents T (2014) Monitoring conterminous Unite States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sens Environ 140:466–484

    Article  Google Scholar 

  • Hayes DJ, Cohen WB (2007) Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sens Environ 106:1–16

    Article  Google Scholar 

  • Healey SP, Cohen WB, Zhiqiang Y, Krankina ON (2005) Comparison of tasseled cap-based landsat data structures for use in forest disturbance detection. Remote Sens Environ 97:301–310

    Article  Google Scholar 

  • Healey SP, Yang Z, Cohen WB, Pierce DJ (2006) Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data. Remote Sens Environ 101:115–126

    Article  Google Scholar 

  • Herrero C, Bravo F (2012) Can we get an operational indicator of forest carbon sequestration? A case study from two forest regions in Spain. Ecol Indic 17:120–126

    Article  CAS  Google Scholar 

  • Homer C, Huan C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70:829–884

    Article  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Chang Biol 11:945–958

    Article  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35. doi:10.1146/annurev.earth.35.031306.140057

  • Huang C, Wylie B, Yang L, Homer C, Zylstra G (2002) Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23:1741–1748

    Article  Google Scholar 

  • Huang C, Goward SN, Schleeweis K, Thomas N, Masek JG, Zhu Z (2009) Dynamics of national forests assessed using Landsat record: case studies in eastern United States. Remote Sens Environ 113:1430–1442

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing. A remote sensing perspective, 3rd edn. Upper Saddle River, NJ, Prentice Hall

    Google Scholar 

  • Jin S, Sader SA (2005) Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens Environ 94:364–372

    Article  Google Scholar 

  • Kangas A, Maltamo M (2006) Managing forest ecosystems: forest inventory: methodology and applications. Springer, Dordrecht

    Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasseled cap – a graphic description of the spectral-temporal development of agricultural crops as seen in Landsat. In: Proceedings on the symposium on machine processing of remotely sensed data, West Lafayette, Indiana, LARS, Purdue University, West Lafayette, Indiana, 41–51 June 29–July 1, 1976

    Google Scholar 

  • Kennedy R, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms. Remote Sens Environ 114:2897–2910

    Article  Google Scholar 

  • Kennedy RE, Andréfouët S, Gómez C, Griffiths P, Hais M, Healey S, Helmer EH, Hostert P, Lyons M, Meigs GW, Pflugmacher D, Phinn S, Powell S, Scarth PF, Sen S, Schroeder TA, Schneider AM, Sonnenschein R, Vogelmann JE, Wulder MA, Zhu Z (2014) Bringing an ecological view of change to Landsat-based remote sensing. Front Ecol Environ 12(6):339–346

    Article  Google Scholar 

  • Kollmann F (1959) Tecnología de la madera y sus aplicaciones. Translation of second edition. In: German of ‘Tecnologie des Holzes und der Holzwerkstoffe: mit 1194 Abbildungen im Text und 6 Tafeln’. Springer, Berlín

    Google Scholar 

  • Kwak DA, Lee WK, Cho HK, Lee SH, Son Y, Kafatos M, Kim SR (2010) Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J Plant Res 123:421–432

    Article  PubMed  Google Scholar 

  • Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration in a ponderosa pine ecosystem. Glob Chang Biol 5:169–182

    Article  Google Scholar 

  • LeQuéré C, Raupach MR, Canadell JG, Marland G et al (2009) Trends in the sources and carbon sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  CAS  Google Scholar 

  • Le Quéré C, Moriarty R, Andrew RM, Peters GP et al (2015) Global carbon budget 2014. Earth Sys Sci Data 7:47–85

    Article  Google Scholar 

  • Liu W, Song C, Schroeder TA, Cohen WB (2008) Predicting forest successional stages using multitemporal Landsat imagery with forest inventory and analysis data. Int J Remote Sens 29(13):3855–3872

    Article  Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens 26(12):2509–2525

    Article  Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens 27:1297–1328

    Article  Google Scholar 

  • Lu D, Batistella M, Moran E (2005) Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogramm Eng Remote Sens 71(8):967–974

    Article  Google Scholar 

  • Lu D, Chen Q, Wang G, Moran E, Batistella M, Zhang M, Laurin GV, Saah D (2012) Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int J For Res, 2012, Article ID 436537, 16 pages, doi:10.1155/2012/436537

    Google Scholar 

  • Lu D, Mause P, Brondizios E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2407

    Article  Google Scholar 

  • Lunetta R, Johnson DM, Lyon J, Crotwell J (2004) Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens Environ 89:444–454

    Article  Google Scholar 

  • Main-Korn M, Cohen WB, Kennedy RE, Grodzki W, Pflugmacher D, Griffiths P, Hostert P (2013) Monitoring coniferous forest biomass change using a Landsat trajectory approach. Remote Sens Environ 139:277–290

    Article  Google Scholar 

  • Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory 38(2):617–643

    Article  Google Scholar 

  • Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, De Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V. 2 approach. Ecol Model 164:177–199

    Article  CAS  Google Scholar 

  • Merlo M, Croitoru L (2005) Valuing Mediterranean forests – towards total economic value. CABI Publishing, Wallingford, 397 pp

    Book  Google Scholar 

  • Mitchard ETA, Saatchi SS, Woodhouse IH, Nangendo G, Ribeiro NS, Williams M, Ryan M, Lewis SL, Feldpausch TR, Meir P (2009) Using satellite radar backscatter to predict above-ground woody biomass: a consistent relationship across four different African landscapes. Geophys Res Lett, 36, L23401, doi:10.1029/2009GL040692

    Google Scholar 

  • MMA 2008 Historia del Inventario Forestal Nacional de España. Available online at: http://www.mma.esp/portal/secciones/biodiversidad/inventarios/ifn/historia/index.htm. Accessed 15 Nov 2010

  • Montero G, Muñoz M, Donés J, Rojo A (2004) Fijación de CO2 por Pinus sylvestris L. y Quercus pyrenaica Willd. en los montes “Pinar de Valsaín” y “Matas de Valsaín”. Sistemas y Recursos Forestales 13(2):399–415

    Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por parte de los bosques españoles. Monografías INIA: Serie Forestal n° 13, Madrid, 270 pp

    Google Scholar 

  • Myers N, Mittelmeier RA, Mittelmeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci 98:14784–14789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala S, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the World’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change (IPCC), Hayama

    Google Scholar 

  • Peterson U, Nilson T (1993) Successional reflectance trajectories in northern temperate forests. Int J Remote Sens 14:609–613

    Article  Google Scholar 

  • Pflugmacher D, Cohen WB, Kennedy RE (2012) Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens Environ 122:146–165

    Article  Google Scholar 

  • Potapov P, Turubanova S, Hansen MC (2011) Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote Sens Environ 115:548–561

    Article  Google Scholar 

  • Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G, Pierce, K.B., & Ohmann, J.L. (2010). Quantification of live aboveground biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ, 114, 1053–1068.

    Google Scholar 

  • Price KP, Jakubauskas ME (1998) Spectral retrogression and insect damage in lodgepole pine successional forests. Int J Remote Sens 19:1627–1632

    Article  Google Scholar 

  • Rivas-Martínez S (1963) Estudio de la vegetación y flora de la Sierra de Guadarrama y Gredos. Anales del Instituto Botánico AJ Cavanilles 21:5–325

    Google Scholar 

  • Rouse JW Jr, Haas RH, Schell JA, Deering DW (1973) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation, Prog. Rep. RSC 1978–1, Remote Sensing Center, Texas A&M Univ., College Station, nr. E73-106393, 93. (NTIS No. E73-106393)

    Google Scholar 

  • Roy DP, Ju J, Mbow C, Frost P, Loveland T (2010) Accessing free Landsat data via the internet: Africa’s challenge. Remote Sens Lett 1(2):111–117

    Article  Google Scholar 

  • Ruiz-Peinado R, Río M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. For Sys 20(1):176–188

    Google Scholar 

  • Salvador R, Pons X (1998) On the applicability of Landsat TM images to Mediterranean forest inventories. For Ecol Manag 104:193–208

    Article  Google Scholar 

  • Schroeder TA, Cohen WB, Song C, Canty MJ, Yang Z (2006) Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sens Environ 103:16–26

    Article  Google Scholar 

  • Schroeder TA, Cohen WB, Yang Z (2007) Patterns of forest regrowth following clearcutting in western Oregon as determined from a Landsat time-series. For Ecol Manag 243:259–273

    Article  Google Scholar 

  • Schulze ED, Wirth C, Heimann M (2000) Climate change: managing forests after Kyoto. Science 22:2058–2059. doi:10.1126/science.289.5487.2058

    Article  Google Scholar 

  • Senf C, Leitao PJ, Pflugmacher D, van der Linden S, Hostert P (2015) Mapping land cover in complex Mediterranean landscapes using Landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens Environ 2015(156):527–536

    Article  Google Scholar 

  • Serrada R (2008) Apuntes de selvicultura. Servicio de publicaciones. EUIT Forestal, Madrid

    Google Scholar 

  • Smeets EMW, Faaij APC (2007) Bioenergy potentials from forestry in 2050. Clim Chang 81(3):353–390

    Article  CAS  Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75:230–244

    Article  Google Scholar 

  • Sonnenschein R, Kuemmerle T, Udelhoven T, Stellness M, Hostert P (2011) Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens Environ 115:1408–1420

    Article  Google Scholar 

  • Sun G, Ranson KJ, Guo Z, Zhang Z, Montesano P, Kimes D (2011) Forest biomass mapping from lidar and radar synergies. Remote Sens Environ 115:2906–2916

    Article  Google Scholar 

  • Tan K, Piao S, Peng C, Fang J (2007) Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982 and 1999. For Ecol Manag 240:114–121

    Article  Google Scholar 

  • Tolomeo R, Lawson T, Lokey G, Dunn C, Stein C, Overton J (2009) The Landsat program is not meeting the goals and intent of the land remote sensing policy act of 1992, Audit report. Report n. IG-09–021 (assignment n. A–08–019–00). NASA

    Google Scholar 

  • Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM (1999) Relationship between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens Environ 70:52–68

    Article  Google Scholar 

  • Vázquez de la Cueva A (2008) Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29(19):5657–5676

    Article  Google Scholar 

  • Velichko VM, Zagoruyko NG (1970) Automatic recognition of 200 words. Int J Man-Mach Stud 2:223–234

    Article  Google Scholar 

  • Vicente-Serrano SM, Perez-Cabello F, Lasanta T (2008) Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens Environ 112:3916–3934

    Article  Google Scholar 

  • Villa G, Arozarena A, Peces JJ, Domenech E (2009) Plan nacional de teledetección: estado actual y perspectivas futuras. Teledetección: agua y desarrollo sostenible. XIII Congreso de la Asociación Española de Teledetección. Calatayud, 23–26 Septiembre, pp. 521–524

    Google Scholar 

  • Villaescusa R, Vallejo R, De La Cita J (2001) Actualización del Mapa Forestal de España. III Congreso Nacional Forestal. Granada, Junta de Andalucía, pp 153–158

    Google Scholar 

  • Vogelmann JE, Tolk B, Zhu Z (2009) Monitoring forest changes in the southwestern United States using multitemporal landsat data. Remote Sens Environ 113:1739–1748

    Article  Google Scholar 

  • Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80:385–396

    Article  Google Scholar 

  • Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen WB, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011

    Article  CAS  PubMed  Google Scholar 

  • Wulder MA, White JC, Fournier RA, Luther JE, Magnussen S (2008a) Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery and GIS. Sensors 8:529–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Wulder MA, Ortlepp SM, White JC, Coops NC (2008b) Impacts of sun-surface-sensor geometry upon multitemporal high spatial resolution satellite imagery. Can J Remote Sens 34:455–461

    Article  Google Scholar 

  • Wulder MA, White JC, Goward SN, Masek JG, Irons JR, Herold M, Cohen WB, Loveland TR, Woodcock CE (2008c) Landsat continuity: issues and opportunities for land cover monitoring. Remote Sens Environ 112:955–969

    Article  Google Scholar 

  • Wulder MA, White JC, Masek JG, Dwyer J, Roy DP (2011) Continuity of Landsat observations: short term considerations. Remote Sens Environ 115:747–751

    Article  Google Scholar 

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

  • Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y (2015) Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170:62–76

    Article  Google Scholar 

  • Yu Y, Saatchi S, Heath LS, LaPoint E, Myneni R, Knyazikhin Y (2010) Regional distribution of forest height and biomass from multisensor data fusion. J Geophys Res 115, http://dx.doi.org/10.1029/2009JG000995, G00E12

  • Zhu Z, Woodcock CE, Olofsson P (2012) Continuous monitoring of forest disturbance using all available Landsat images. Remote Sens Environ 122:75–91

    Article  Google Scholar 

Download references

Acknowledgements

This work was done under the project “Estructura, dinámica y selvicultura para la conservación y el uso sostenible de los bosques en el Sistema Central” (VA-096-A05) with funding from Consejería de Educación, Junta de Castilla y León, Plan Regional I+D+I. Field data was provided by Consejería de Medio Ambiente y Ordenación Territorial de Castilla y León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez, C., White, J.C., Wulder, M.A. (2017). Changing Trends of Biomass and Carbon Pools in Mediterranean Pine Forests. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_7

Download citation

Publish with us

Policies and ethics